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1 Introduction

Statistical inference for diffusion type processes satisfying stochastic differential equations

driven by Wiener processes has been studied earlier and a comprehensive survey of vari-

ous methods is given in Prakasa Rao (1999a). There has been a recent interest to study

similar problems for stochastic processes driven by a fractional Brownian motion. Le Bre-

ton (1998) studied parameter estimation and filtering in a simple linear model driven by a

fractional Brownian motion. Kleptsyna and Le Breton (2002) studied parameter estimation

problems for fractional Ornstein-Uhlenbeck type process. This is a fractional analogue of

the Ornstein-Uhlenbeck process, that is, a continuous time first order autoregressive process

X = {Xt, t ≥ 0} which is the solution of a one-dimensional homogeneous linear stochastic

differential equation driven by a fractional Brownian motion (fBm) WH = {WH
t , t ≥ 0} with

Hurst parameter H ∈ [1/2, 1). Such a process is the unique Gaussian process satisfying the

linear integral equation

Xt = θ

∫ t

0
Xsds+ σWH

t , t ≥ 0.(1. 1)

They investigate the problem of estimation of the parameters θ and σ2 based on the ob-

servation {Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator θ̂T is strongly
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consistent as T → ∞. We discussed more general classes of stochastic processes satisfying lin-

ear stochastic differential equations driven by a fractional Brownian motion and studied the

asymptotic properties of the maximum likelihood and the Bayes estimators for parameters

involved in such processes in Prakasa Rao (2003, 2005). Prakasa Rao (2010) gives a compre-

hensive discussion on problems of estimation for processes driven by a fractional Brownian

motion. So (2005) noted that the standard asymptotic theory developed for studying the

asymptotic properties of maximum likelihood estimators (MLE) for diffusion processes (cf.

Basawa and Prakasa Rao (1980); Prakasa Rao (1999a,b)) depends on the stationarity of the

underlying process {Xt, t ≥ 0} and hence proposed an instrumental variable approach for the

estimation of drift parameter for stochastic processes satisfying linear stochastic differential

equations driven by a Wiener process. As discussed by So (2005), this approach allows one

to study asymptotic properties of estimators in non-stationary models such as random walk

and cointegration which are used in economics and finance literature. We extended this ap-

proach in Prakasa Rao (2007) to estimate the parameters for stochastic processes satisfying

linear stochastic differential equations driven by a fractional Brownian motion in view of

their applications for modeling in finance.

Geometric Brownian motion has been widely used for modeling fluctuations of share prices

in a stock market. Recently there has been an interest to study the problem of estimation

of parameters for processes driven by processes which are mixtures of independent Brownian

and fractional Brownian motions starting from the work of Cheridito (2001), Rudomino-

Dusyatska (2003) and more recently in Prakasa Rao (2015a,b) among others. Mixed fractional

Brownian models were studied in Mishura (2008) and Prakasa Rao (2010). Cai et al. (2016)

present a new approach via filtering for analysis of mixed processes of type {Xt = Bt+Gt, 0 ≤
t ≤ T} where {Bt, 0 ≤ t ≤ T} is a Brownian motion and {Gt, 0 ≤ t ≤ T} is an independent

Gaussian process. Statistical Analysis of mixed fractional Ornstein-Uhlenbebeck process

was investigated in Chigansky and Kleptsyna (2015). Large deviations for drift parameter

estimator of mixed fractional Ornstein-Uhlenbeck process were studied by Marushkevych

(2016).

Our aim in this paper is to extend the instrumental variable approach for estimation

of parameters involved in processes driven by mixed fractional Brownian motion (mFBm)

generalizing the work in Prakasa Rao (2007) and So (2005).
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2 Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions. The natural filtration

of a stochastic process is understood as the P -completion of the filtration generated by this

process. Let {Wt, t ≥ 0} be a standard Wiener process and WH = {WH
t , t ≥ 0} be an

independent normalized fractional Brownian motion with Hurst parameter H ∈ (0, 1), that

is, a Gaussian process with continuous sample paths such that WH
0 = 0, E(WH

t ) = 0 and

E(WH
s WH

t ) =
1

2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2. 1)

Let

W̃H
t = Wt +WH

t , t ≥ 0.

The process {W̃H
t , t ≥ 0} is called the mixed fractional Brownian motion with Hurst index

H. We assume here after that Hurst index H is known. Following the results in Cheridito

(2001), it is known that the process W̃H is a semimartingale in its own filtration if and only

if either H = 1/2 or H ∈ (34 , 1]. We will assume here after that H ∈ (34 , 1].

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic integral

equation

Yt =

∫ t

0
C(s)ds+ W̃H

t , t ≥ 0(2. 2)

where the process C = {C(t), t ≥ 0} is an (Ft)-adapted process. For convenience, we write

the above integral equation in the form of a stochastic differential equation

dYt = C(t)dt+ dW̃H
t , t ≥ 0(2. 3)

driven by the mixed fractional Brownian motion W̃H . Following the recent works by Cai et

al.(2016) and Chigansky and Kleptsyna (2016), one can construct an integral transforma-

tion that transforms the mixed fractional Brownian motion W̃H into a martingale MH . Let

gH(s, t) be the solution of the integro-differential equation

gH(s, t) +H
d

ds

∫ t

0
gH(r, t)|s− r|2H−1sign(s− r)dr = 1, 0 < s < t.(2. 4)

Cai et al. (2016) proved that the process

MH
t =

∫ t

0
gH(s, t)dW̃H

s , t ≥ 0(2. 5)

is a Gaussian martingale with quadratic variation

< MH >t=

∫ t

0
gH(s, t)ds, t ≥ 0(2. 6)
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Furthermore the natural filtration of the martingale MH coincides with that of the mixed

fractional Brownian motion W̃H . Suppose that, for the martingale MH defined by the equa-

tion (2.5), the sample paths of the process {C(t), t ≥ 0} are smooth enough in the sense that

the process

Qt =
d

d < MH >t

∫ t

0
gH(s, t)C(s)ds, t ≥ 0(2. 7)

is well defined. Define the process

Zt =

∫ t

0
gH(s, t)dYs, t ≥ 0.(2. 8)

As a consequence of the results in Cai et al. (2016), it follows that the process Z is a

fundamental semimartingale associated with the process Y in the following sense.

Theorem 2.1: Let gH(s, t) be the solution of the equation (2.4). Define the process Z as

given in the equation (2.8). Then the following relations hold.

(i) The process Z is a semimartingale with the decomposition

Zt =

∫ t

0
Qsd < MH >s +MH

t , t ≥ 0(2. 9)

where MH is the martingale defined by the equation (2.5).

(ii) The process Y admits the representation

Yt =

∫ t

0
ĝH(s, t)dZs, t ≥ 0(2. 10)

where

ĝH(s, t) = 1− d

d < MH >s

∫ t

0
gH(r, s)dr.(2. 11)

(iii) The natural filtrations (Yt) and (Zt) of the processes Y and Z respectively coincide.

Applying Corollary 2.9 in Cai et al. (2016), it follows that the probability measures

µY and µW̃H generated by the processes Y and W̃H on an interval [0, T ] are absolutely

continuous with respect to each other and the Radon-Nikodym derivative is given by

dµY

dµW̃H

(Y ) = exp[

∫ T

0
QsdZs −

1

2

∫ T

0
Q2

sd < MH >s](2. 12)

which is also the likelihood function based on the observation {Ys, 0 ≤ s ≤ T.} Since the

filtrations generated by the processes Y and Z are the same, the information contained in

the families of σ-algebras (Yt) and (Zt) is the same and hence the problem of the estimation

of the parameters involved based on the observation {Ys, 0 ≤ s ≤ T} and {Zs, 0 ≤ s ≤ T}
are equivalent.
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3 Instrumental Variable Estimation

Let us consider the stochastic differential equation

dX(t) = [a(t,X(t)) + θ b(t,X(t))]dt+ dW̃H
t , X(0) = 0, t ≥ 0(3. 1)

where θ ∈ Θ ⊂ R with known Hurst parameter H. In other words X = {Xt, t ≥ 0} is a

stochastic process satisfying the stochastic integral equation

X(t) =

∫ t

0
[a(s,X(s)) + θ b(s,X(s))]ds+ W̃H

t , t ≥ 0.(3. 2)

Let

C(θ, t) = a(t,X(t)) + θ b(t,X(t)), t ≥ 0(3. 3)

and assume that the sample paths of the process {C(θ, t), t ≥ 0} are smooth enough so that

the process

QH,θ(t) =
d

d < MH >t

∫ t

0
gH(s, t)C(θ, s)ds, t ≥ 0(3. 4)

is well defined. Suppose the sample paths of the process {QH,θ, 0 ≤ t ≤ T} belong almost

surely to L2([0, T ], dwH
t ). Define

Zt =

∫ t

0
gH(s, t)dXs, t ≥ 0.(3. 5)

Then the process Z = {Zt, t ≥ 0} is an (Ft)-semimartingale with the decomposition

Zt =

∫ t

0
QH,θ(s)d < MH >s +MH

t(3. 6)

where MH is the fundamental martingale and the process X admits the representation

Xt =

∫ t

0
ĝH(s, t)dZs.(3. 7)

Let P T
θ be the probability measure induced by the process {Xt, 0 ≤ t ≤ T} when θ is the

true parameter. Following Theorem 2.1, we get that the Radon-Nikodym derivative of P T
θ

with respect to P T
0 is given by

dP T
θ

dP T
0

= exp[

∫ T

0
QH,θ(s)dZs −

1

2

∫ T

0
Q2

H,θ(s)d < MH >s].(3. 8)

We now consider the problem of estimation of the parameter θ based on the observation

of the process X = {Xt, 0 ≤ t ≤ T} or equivalently {Zt, 0 ≤ t ≤ T} and study the asymptotic

properties of such estimators as T → ∞.
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Let {α(t), t ≥ 0} be a stochastic process such that the function α(t) is Ft-measurable. An

example of such a process is α(t) = K(t, X̃(t)), where X̃(t) = {X(s), 0 ≤ s ≤ t} and K(., .)

is a real-valued measurable function defined on R+ ×R. Suppose that∫ T

0
E[(α(t))2]d < MH >t< ∞.

This condition implies that the stochastic integral∫ T

0
α(t)dMH

t

exists as a stochastic integral with respect to the martingale {MH
t ,Ft, t ≥ 0}. In particular

E(

∫ T

0
α(t)dMH

t ) = 0.

Observing that

dZt = dMH
t +QH,θ(t)d < MH >t, t ≥ 0

from (3.6), we can rewrite the above equation in the form

E(

∫ T

0
α(t)(dZt −QH,θ(t)d < MH >t) = 0

or equivalently

E(

∫ T

0
α(t)(dZt − (J1(t) + θJ2(t))d < MH >t)) = 0(3. 9)

where

(3. 10)

QH,θ(t) =
d

d < MH >t

∫ t

0
gH(s, t)C(θ, s)ds

=
d

d < MH >t

∫ t

0
gH(t, s)a(s,X(s))ds+ θ

d

d < MH >t

∫ t

0
gH(t, s)b(s,X(s))ds

= J1(t) + θJ2(t). (say).

A sample analogue of the equation (3.9) is∫ T

0
α(t)(dZt − (J1(t) + θJ2(t))d < MH >t) = 0(3. 11)

which motivates the instrumental variable estimator defined below.

Definition 3.1: Corresponding to the Ft-adapted instrument process {α(t), t ≥ 0}, the

instrumental variable estimator (IVE) of θ is defined by

θ̃T =

∫ T
0 α(t)(dZt − J1(t)d < MH >t)∫ T

0 α(t)J2(t)d < MH >t

.
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Choosing the process {α(t), t ≥ 0} suitably, we can obtain a class of instrumental variable

estimators (IVE) for θ. In analogy with the least squares estimation, we can choose α(t) =

J2(t) as defined above and the corresponding IVE may be called a least squares estimator

(LSE). In fact, it is the maximum likelihood estimator (MLE) (cf. Prakasa Rao (2003)).

In the following discussion, we will choose α(t) = K(t, X̃(t)) where K(., .) is a real-valued

measurable function defined on R+ ×R.

Suppose θ0 is the true value of the parameter θ. It is easy to check that

θ̃T − θ0 =

∫ T
0 K(t, X̃(t))dMH

t∫ T
0 K(t, X̃(t))J2(t)d < MH >t

(3. 12)

using the fact that

dZt = (J1(t) + θ0J2(t))d < MH >t +dMH
t .(3. 13)

We now discuss the problem of instrumental variable estimation of the parameter θ on

the basis of the observation of the process X or equivalently the process Z on the interval

[0, T ].

The equation (3.12) can be written in the form

θ̃T − θ0 =

∫ T
0 K(t, X̃(t))dMH

t∫ T
0 K(t, X̃(t))2d < MH >t

∫ T
0 K(t, X̃(t))2d < MH >t∫ T

0 K(t, X̃(t))J2(t)d < MH >t

.(3. 14)

Strong Consistency:

Theorem 3.1: The instrumental variable estimator θ̃T is strongly consistent, that is,

θ̃T → θ0 a.s [Pθ0 ] as T → ∞(3. 15)

provided

(i)

∫ T

0
K(t, X̃(t))2d < MH >t→ ∞ a.s [Pθ0 ] as T → ∞(3. 16)

and

(ii) lim sup
T→∞

|
∫ T
0 K(t, X̃(t))2d < MH >t∫ T

0 K(t, X̃(t))J2(t)d < MH >t

| < ∞ a.s. [Pθ0 ].(3. 17)

Proof: This theorem follows by observing that the process

RT ≡
∫ T

0
K(t, X̃(t))dMH

t , t ≥ 0(3. 18)
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is a local martingale with the quadratic variation process

< R >T=

∫ T

0
K(t, X̃(t))2(t)d < MH >t(3. 19)

and applying the Strong law of large numbers (cf. Liptser (1980); Prakasa Rao (1999b), p.

61) under the conditions (i) and (ii) stated above.

Remarks: For the case fractional Ornstein-Uhlenbeck type process driven by a mfBm defined

by the equation (1.1), investigated in Chigansky and Kleptsyna (2016), it can be checked

that the condition stated in the equation (i) holds when K(t, X̃(t)) = J2(t) and hence the

maximum likelihood estimator which is also the least squares estimator is strongly consistent

as T → ∞.

Limiting distribution:

We now discuss the limiting distribution of the IVE θ̃T as T → ∞. Let

βT =

∫ T
0 K(t, X̃(t))2d < MH >t∫ T

0 K(t, X̃(t))J2(t)d < MH >t

.(3. 20)

It is easy to see that

θ̃T − θ0 =
RT

< R >T
βT .(3. 21)

Theorem 3.2: Assume that the functions b(t, s) is such that the process {Rt, t ≥ 0} is a local

continuous martingale and that there exists a process {γt, t ≥ 0} such that γt is Ft-adapted

and

γ2T < R >T= γ2T

∫ T

0
K(t, X̃(t))2(t)d < MH >t→ η2 in probability as T → ∞(3. 22)

where γ2T → 0 a.s. [P]as T → ∞ and η is a random variable such that P (η > 0) = 1. Then

(γTRT , γ
2
T < R >T ) → (ηZ, η2) in law as T → ∞(3. 23)

where the random variable Z has the standard normal distribution and the random variables

Z and η are independent.

Proof: This theorem follows as a consequence of the Central limit theorem for martingales

(cf. Theorem 1.49 ; Remark 1.47 , Prakasa Rao (1999b), p. 65).

Observe that

β−1
T γ−1

T (θ̃T − θ0) =
γTRT

γ2T < R >T
.(3. 24)
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Applying Theorem 3.2, we obtain the following result.

Theorem 3.3: Suppose the conditions stated in the Theorem 3.2 hold. Then

(βTγT )
−1(θ̃T − θ0) →

Z

η
in law as T → ∞(3. 25)

where the random variable Z has the standard normal distribution and the random variables

Z and η are independent.

Remarks: (i)If the random variable η is a constant with probability one, then the limiting

distribution of the normalized IVE with random norming is normal with mean 0 and variance

η−2. Otherwise it is a mixture of the normal distributions with mean zero and variance η−2

with the mixing distribution as that of η.

(ii) Note that the IVE is not necessarily asymptotically efficient. It is not asymptotically

efficient even when the the random variable η is a constant. It is asymptotically efficient in

this case if K(t, X̃(t)) = J2(t) where the process J2(t) is as defined by the equation (3.10).

Observe that the IVE reduces to the MLE in case K(t, X̃(t)) = J2(t).

4 Berry-Esseen type bound for IVE

Hereafter we assume that the random variable η in (3.22) is a positive constant with proba-

bility one. Hence

(βTγT )
−1(θ̃T − θ0) → N(0, η−2) in law as T → ∞(4. 1)

where N(0, η−2) denotes the Gaussian distribution with mean zero and variance η−2. We will

now study the rate of convergence of the asymptotic distribution of the IVE in (4.1).

Suppose there exist non-random positive functions δT decreasing to zero and εT decreasing

to zero such that

δ−1
T ε2(T ) → ∞ as T → ∞(4. 2)

and

sup
θ∈Θ

P T
θ [|δT < R >T −1| ≥ εT ] = O(ε

1/2
T )(4. 3)

where the process {Rt, t ≥ 0} is as defined in (3.18). Note that the process {Rt, t ≥ 0} is

a locally square integrable continuous martingale. From the results on the representation of

locally square integrable continuous martingales (cf. Ikeda and Watanabe (1981), Chapter
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II, Theorem 7.2), it follows that there exists a standard Wiener process {B(t), t ≥ 0} adapted

to (Ft) such that Rt = B(< R >T ), t ≥ 0. In particular

RT δ
1/2
T = B(< R >T δT ) a.s. [Pθ0 ](4. 4)

for all T ≥ 0.

We use the following lemmas in the sequel.

Lemma 4.1: Let (Ω,F , P ) be a probability space and f and g be F-measurable functions.

Then, for any ε > 0,

sup
x

|P (ω :
f(ω)

g(ω)
≤ x)− Φ(x)|(4. 5)

≤ sup
y

|P (ω : f(ω) ≤ y)− Φ(x)|+ P (ω : |g(ω)− 1| > ε) + ε

where Φ(x) is the distribution function of the standard Gaussian distribution.

Proof: See Michel and Pfanzagl (1971).

Lemma 4.2: Let {B(t), t ≥ 0} be a standard Wiener process and V be a nonnegative

random variable. Then, for every x ∈ R and ε > 0,

|P (B(V ) ≤ x)− Φ(x)| ≤ (2ε)1/2 + P (|V − 1| > ε).(4. 6)

Proof: See Hall and Heyde (1980), p.85.

Let us fix θ ∈ Θ. It is clear from the earlier remarks that

RT =< R >T β−1
T (θ̃T − θ)(4. 7)

under Pθ measure. Then it follows, from the Lemmas 4.1 and 4.2, that

Pθ[δ
−1/2
T β−1

T (θ̂T − θ0) ≤ x]− Φ(x)|(4. 8)

= |Pθ[
RT

< R >T
δ
−1/2
T ≤ x]− Φ(x)|

= |Pθ[
RT /δ

−1/2
T

< R >T /δ−1
T

≤ x]− Φ(x)|

≤ sup
x

|Pθ[RT δ
1/2
T ≤ x]− Φ(x)|

+Pθ[|δT < R >T −1| ≥ εT ] + εT

= sup
y

|P (B(< R >T δT ) ≤ y)− Φ(y)|+ Pθ[|δT < R >T −1| ≥ εT ] + εT

≤ (2εT )
1/2 + 2Pθ[|δT < R >T −1| ≥ εT ] + εT .
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It is clear that the bound obtained above is of the order O(ε
1/2
T ) under the condition (4.3)

and it is uniform in θ ∈ Θ. Hence we have the following result.

Theorem 4.3: Under the conditions (4.2) and (4.3),

sup
θ∈Θ

sup
x∈R

|Pθ[δ
−1/2
T β−1

T (θ̃T − θ) ≤ x]− Φ(x)|(4. 9)

≤ (2εT )
1/2 + 2Pθ[|δT < R >T −1| ≥ εT ] + εT = O(ε

1/2
T ).

As a consequence of this result, we have the following theorem giving the rate of conver-

gence of the IVE θ̃T .

Theorem 4.4: Suppose the conditions (4.2) and (4.3) hold. Then there exists a constant

c > 0 such that for every d > 0,

sup
θ∈Θ

Pθ[β
−1
T |θ̃T − θ| ≥ d] ≤ cε

1/2
T + 2Pθ[|δT < R >T −1| ≥ εT ] = O(ε

1/2
T ).(4. 10)

Proof: Observe that

sup
θ∈Θ

Pθ[β
−1
T |θ̃T − θ| ≥ d](4. 11)

≤ sup
θ∈Θ

|Pθ[δ
−1/2
T β−1

T (θ̃T − θ) ≥ dδ
−1/2
T ]− 2(1− Φ(dδ

−1/2
T ))|

+2(1− Φ(dδ
−1/2
T ))

≤ (2εT )
1/2 + 2 sup

θ∈Θ
Pθ[|δT < R >T −1| ≥ εT ] + εT

+2d−1/2δ
1/2
T (2π)−1/2 exp[−1

2
δ−1
T d2]

by Theorem 4.3 and the inequality

1− Φ(x) <
1

x
√
2π

exp[−1

2
x2](4. 12)

for all x > 0 (cf. Feller (1968), p.175). Since

δ−1
T ε2(T ) → ∞ as T → ∞

by the condition (4.2), it follows that

sup
θ∈Θ

Pθ[β
−1
T |θ̃T − θ| ≥ d] ≤ cε

1/2
T + 2 sup

θ∈Θ
Pθ[|δT < R >T −1| ≥ εT ](4. 13)
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for some constant c > 0 and the last term is of the order O(ε
1/2
T ) by the condition (4.3). This

proves Theorem 4.4.
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