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1 Introduction

Suppose X = {Xt, 0 ≤ t ≤ T} and Y = {Yt, 0 ≤ t ≤ T} are real-valued stochastic pro-

ceses, representing the signal and the observation respectively, governed by the following

homogeneous linear system of stochastic differential equations

dXt = θXtdt+ ϵ dV h
t , 0 ≤ t ≤ T,X0 = x0 ̸= 0,(1. 1)

dYt = θXtdt+ ϵ dWt, 0 ≤ t ≤ T, Y0 = 0.

Here the processes V h = {V h
t , 0 ≤ t ≤ T} is a fractional Brownian motion with Hurst index

h ∈ [12 , 1) and W = {Wt, 0 ≤ t ≤ T} is a standard Brownian motion independent of V h and
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θ ∈ Θ open in R. Suppose the component Y = {Yt, 0 ≤ t ≤ T} is observed and the problem

is to estimate the unknown parameter θ based on the observation Y = {Yt, 0 ≤ t ≤ T} and

study its asymptotic properties as ϵ→ 0. The system (1.1) has a unique solution (X,Y ) which

is a Gaussian process . Suppose that we observe the process Y alone but would like to have

information about the process X at time t. This problem is known as filtering the signal X at

time t from the observation of Y up to time t. The solution to this problem is the conditional

expectation of Xt given the σ-algebra generated by the process {Ys, 0 ≤ s ≤ t}. Since the

processes (X,Y ) is jointly Gaussian, the conditional expectation of Xt given {Ys, 0 ≤ s ≤ t}
is linear in {Ys, 0 ≤ s ≤ t}. It is also the optimal filter in the sense of minimizing the mean

square error. The problem of finding the optimal filter reduces to finding the conditional

mean πt(θ,X) = Eθ(Xt|Ys, 0 ≤ s ≤ t). This problem leads to Kalman-Bucy filter if h = 1
2 . Le

Breton (1998) and Kleptsyna and Le Breton (2002b) and Kleptsyna et al. (2000a,b) studied

this problem of filtering for h ∈ (12 , 1). For h = 1/2, this problem has been solved by Kutoyants

(1994). For optimal filtering for fractional stochastic systems, see Kleptsyna, Kloden and Ahn

(1998). Asymptotic properties of maximum likelihood estimator of the drift parameter for

partially observed fractional diffusion systems are investigated in Brouste and Kleptsyna

(2010). Kallianpur and Selukar (1991,1993) have studied parameter estimation and local

asymptotic normality in linear filtering for linear systems driven by Brownian motions. They

have also obtained a large deviation inequality for the maximum likelihood estimator (MLE)

of the parameter. Mishra and Prakasa Rao (2016) investigated local asymptotic normality

and estimation via Kalman-Bucy filter for linear systems when both the signal and the

observation are driven by independent fractional Brownian motions with the same Hurst

index subject to a technical condition. Our results, in the special case discussed here, do not

need any extra technical condition.

We obtain the asymptotic properties of the maximum likelihood estimator (MLE) of the

parameter θ by studying the asymptotic properties of the log-likelihood ratio process with

index ϵ as ϵ→ 0.We follow the techniques used by Prakasa Rao (1968), Ibragimov and Khas-

minskii (1981) and others. We prove the weak convergence of the appropriately normalized

log-likelihood ratio random process and appeal to the continuous mapping theorem to study

the asymptotic behaviour of the MLE of the parameter θ as ϵ→ 0.

We now state the main result of this paper. Let θ denote the true parameter. Let θ̂ϵ

denote the maximum likelihood estimator of θ based on the observation of the process Y

over the interval [0, T ] satisfying the stochastic differential system defined by (1.1). Then, as
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ϵ→ 0, the random variable

ϵ−1(θ̂ϵ − θ)

converges in distribution to the Gaussian distribution with mean zero and variance [σ2(θ)]−1

where σ2(θ) will be specified later.

2 Preliminaries

We now introduce some notation and some basic results. Let (Ω,F , (Ft), P ) be a stochastic

basis satisfying the usual conditions and the processes discussed in the following are (Ft)-

adapted. Further the natural filtration of a process is understood as the P -completion of the

filtration generated by this process. LetW h = {W h
t , t ≥ 0} be a standard fractional Brownian

motion with Hurst parameter h ∈ (0, 1), that is, a Gaussian process with continuous sample

paths such that W h
0 = 0, E(W h

t ) = 0 and

E(W h
s W

h
t ) =

1

2
[s2h + t2h − |s− t|2h], t ≥ 0, s ≥ 0.(2. 1)

Let us consider a stochastic process J = {Jt, t ≥ 0} governed by the stochastic integral

equation

Jt =

∫ t

0
C(s)ds+

∫ t

0
B(s)dW h

s , t ≥ 0(2. 2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a non-vanishing non-random

function. For convenience, we write the above integral equation in the form of a stochastic

differential equation

dJt = C(t)dt+B(t)dW h
t , t ≥ 0; J0 = 0(2. 3)

driven by the fractional Brownian motion W h. Even though the process J is not a semi-

martingale, one can associate a semimartingale Z = {Zt, t ≥ 0} which is called a fundamen-

tal semimartingale such that the natural filtration (Zt) of the process Z coincides with the

natural filtration (Jt) of the process J (Kleptsyna et al. (2000a)). Define, for 0 < s < t,

kh = 2h Γ(
3

2
− h)Γ(h+

1

2
),(2. 4)

κh(t, s) = k−1
h s

1
2
−h(t− s)

1
2
−h,(2. 5)

λh =
2h Γ(3− 2h)Γ(h+ 1

2)

Γ(32 − h)
,(2. 6)

wh
t = λ−1

h t2−2h,(2. 7)
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and

Mh
t =

∫ t

0
κh(t, s)dW

h
s , t ≥ 0.(2. 8)

The processMh is a Gaussian martingale, called the fundamental martingale and its quadratic

variation < Mh
t >= wh

t . Further more the natural filtration of the martingale Mh coincides

with the natural filtration of the fBm W h.

Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth so that

Qh(t) =
d

dwh
t

∫ t

0
κh(t, s)

C(s)

B(s)
ds, t ∈ [0, T ](2. 9)

is well-defined where the functions wh and kh(t, s) are as defined in (2.7) and (2.5) respectively

and the derivative is understood in the sense of absolute continuity. The following theorem

due to Kleptsyna et al. (2000a) associates a fundamental semimartingale Z associated with

the process J such that the natural filtration (Zt) of Z coincides with the natural filtration

(Jt) of J.

Theorem 2.1: Suppose the sample paths of the process Qh belong to L2([0, T ], dwh) a.s. Let

the process Z = (Zt, t ∈ [0, T ]) be defined by

Zt =

∫ t

0
κh(t, s)B

−1(s)dJs.(2. 10)

Then the following results hold:

(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt =

∫ t

0
Qh(s)dw

h
s +Mh

t(2. 11)

where Mh is the fundamental martingale defined above.

(ii) the natural filtrations (Zt) and (Jt) coincide.

For more details on properties of fractional diffusion processes, see Prakasa Rao (2010).

Suppose that {ηt, 0 ≤ t ≤ T} is a random process adapted to the filtration (Ft) such that

Eθ|ηt| <∞ on the underlying probability space (Ω,F , P ). Let πt(θ, η) denote the conditional
expectation of ηt given {Ys, 0 ≤ s ≤ t} when θ is the true parameter. Let (Yt) denote the

filtration generated by the process Y. Let

ϵνt = Yt − θ

∫ t

0
πs(θ,X)ds, 0 ≤ t ≤ T(2. 12)
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where πt(θ,X) = Eθ(X(t)|Ys, 0 ≤ s ≤ t). The process ν = {νt, 0 ≤ t ≤ T} is the innovation

type process and is a Wiener process in the present problem. Furthermore, if N = {Nt, 0 ≤
t ≤ T} is a square integrable (Yt)-martingale, N0 = 0, then there exists a (Yt)-adapted

process α = {αt, 0 ≤ t ≤ T} such that

E(

∫ T

0
α2
sds) <∞

and P -a.s

Nt =

∫ t

0
αsdνs, 0 ≤ t ≤ T.

3 Main Results

Consider the linear system described by (1.1). Let xt(θ) = x0e
θt, 0 ≤ t ≤ T denote the

solution of the corresponding ordinary differential equation

dxt
dt

= θxt

with xt(θ) = x0 at t = 0. Suppose θ ∈ Θ open in R. It can be checked that the processes Q

and π(θ,Q), as defined in Section 2, are given by the relations

Qt =
θ

ϵ
X(t), πt(θ,Q) =

θ

ϵ
πt(θ,X)

for this problem (cf. Kleptsyna et al. (2000b), p. 129). Let

p(t, s) =
θ

ϵ

d

dwh
t

∫ t

s
κh(t, r)dr.

An application of Theorem 4 of Kleptsyna et al. (2000b) to the process X shows that

πt(θ,X) = x0 + θ

∫ t

0
πs(θ,X)ds+

∫ t

0
c(θ, ϵ, t, s)dνs, 0 ≤ t ≤ T

for some non-random function c(θ, ϵ, t, s). Following equation (6.10) in Kutoyants (1994),

p.194, the representation given above can also be expressed as a stochastic differential equa-

tion

dπt(θ,X) = θπt(θ,X)dt+ θϵzt(θ)dνt, π0(θ,X) = x0

where zt(θ) = γt(θ)ϵ
−2 and γt(θ) = Eθ[πt(θ,X)−Xt]

2. Let

Jt(θ) = θ − zt(θ)θ
2
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and

Mt(θ) = θzt(θ).

Following again the derivations in obtaining the equation (6.11) in Kutoyants (1994), p.194,

we obtain that

dπ̄t(θ,X) = [J̄t(θ)πt(θ,X) + Jt(θ)π̄t(θ,X)]dt+ M̄t(θ)dνt, π̄0(θ,X) = 0

where V̄ (θ,X) denotes the derivative of V (θ,X) with respect to θ in L2-mean. Let

ζt(θ,X) = πt(θ,X) + θπ̄t(θ,X)(3. 1)

and

ζt(θ, x) = x0e
θt + θ2x0e

θt.(3. 2)

Note that

Eθ[ζt(θ,X)− ζt(θ, x)]
2 ≤ 2(Eθ[(πt(θ,X)− x0e

θt)2] + Eθ[(θπ̄t(θ,X)− x0θ
2eθt)2]).(3. 3)

Following Lemma 4.0 proved below, this inequality, in turn, implies that the random variable

ζt(θ,X) converges in L2-mean to ζt(θ, x) as ϵ→ 0 when θ is the true parameter.

Fix θ ∈ Θ ∈ R. Let

∆t = (θ + ϵu)πt(θ + ϵu,X)− θ πt(θ,X).

For convenience, we denote θ + ϵu1 = β1 and θ + ϵu2 = β2.

Let

σ2(θ) =

∫ T

0
[ζt(θ, x)]

2dt(3. 4)

and

L0(u) = uξ − 1

2
u2σ2(θ), u ∈ R(3. 5)

where ξ is a Gaussian random variable with mean zero and variance σ2(θ) and the function

ζt(θ, x) is as specified in (3.2).

We now state the main result of this paper.

Theorem 3.1: Let θ denote the true parameter. Let θ̂ϵ denote the maximum likelihood

estimator of θ based on the observation of the process Y over the interval [0, T ] satisfying

6



the stochastic differential system defined by (1.1). Then, as ϵ → 0, the normalized random

vector

ϵ−1(θ̂ϵ − θ)

converges to the Gaussian distribution with mean zero and variance [σ2(θ)]−1.

Local asymptotic normality: Let Pθ be the probability measure generated by the process

Y on the space C[−g, g] associated with the uniform topology when θ is the true parameter.

Here C[−g, g] is the space of continuous real-valued functions on the interval [−g, g] where
g > 0. Equation (26) of Kleptsyna et al. (2000b) implies that, for any θ1 and θ2 in Θ,

dPθ2

dPθ1

= exp{1
ϵ

∫ T

0
[θ2πs(θ2, X)− θ1πs(θ1, X)]dνs −

1

2ϵ2

∫ T

0
[θ2πs(θ2, X)− θ1πs(θ1, X)]2ds}.

Consider the log-likelihood ratio process

Lϵ(u) = log
dPθ+ϵu

dPθ

for fixed u such that θ, θ + ϵu ∈ Θ.

Let K denote a compact subset of Θ such that θ ∈ K and θ+ ϵu ∈ K. Let CK denote the

space of continuous functions defined on the compact set K. Let Kθ = {u : θ ∈ K and θ +

ϵu ∈ K}.

Theorem 3.2: The family of probability measures, generated by the log-likelihood ratio ran-

dom process {Lϵ(u), u ∈ Kθ} on CKθ
associated with the uniform norm topology is locally

asymptotically normal and converge weakly to the probability measure generated by the ran-

dom process {L0(u), u ∈ Kθ} on CKθ
as ϵ→ 0.

From the general theory of weak convergence of probability measures on the space CKθ

associated with the uniform norm topology (cf. Billingsley (1968), Parthasarathy (1967),

Prakasa Rao (1975)), in order to prove Theorem 3.2, it is sufficient to prove that the finite

dimensional distributions of the random field {Lϵ(u), u ∈ Kθ} converge to the correspond-

ing finite dimensional distributions of the random field {L0(u), u ∈ Kθ} and the family of

probability measures generated by the random fields {Lϵ(u), u ∈ Kθ} for different ϵ is tight.

4 Proofs of Theorems 3.1 and 3.2

Before we give proofs of Theorem 3.1 and Theorem 3.2, we prove some related lemmas.
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Lemma 4.0:Let θ ∈ Θ. There exists a neighbourhood Nθ = {θ′ : |θ′− θ| < ϵu} of θ contained

in Θ and a constant ct > 0 depending on θ such that

(i) sup
θ′∈Nθ

sup
0≤s≤t

Eθ|πs(θ′, X)− xs(θ
′)|2 ≤ ctϵ

2t

and

(ii) sup
θ′∈Nθ

sup
0≤s≤t

Eθ|πs(θ′, Q)− ϵ−1θ′xs(θ
′)|2 ≤ ctt.

Proof : An application of the Grownwall’s inequality (cf. Kutoyants (1994), Lemma 1.13)

shows that

sup
θ′∈Nθ

sup
0≤s≤t

|πs(θ′, X)− xs(θ
′)| ≤ c0ϵ sup

0≤s≤t
|νs|

and hence

sup
θ′∈Nθ

sup
0≤s≤t

Eθ[|πs(θ′, X)− xs(θ
′)|2] ≤ ctϵ

2t.(4. 1)

The second inequality follows from the first inequality following the representation for

the process πt(θ,Q) given above.

Following the arguments in Kutoyants (1994), p.194-195, it follows that the process

{θπt(θ,X), 0 ≤ t ≤ T} is L2-differentiable with respect to θ and

Eθ[||(θ + ϵu)π(θ + ϵu,X)− θπ(θ,X)− ϵu ζ(θ,X)||2] ≤ Cϵ4u4.(4. 2)

Lemma 4.1: The finite dimensional distributions of the random process {Lϵ(u), u ∈ Kθ} con-

verge to the corresponding finite dimensional distributions of the random process {L0(u), u ∈
Kθ} as ϵ→ 0.

Proof: We will first investigate the convergence of the one-dimensional marginal distributions

of the random process Lϵ(u) as ϵ→ 0. The convergence of other classes of finite-dimensional

distributions follows from the Cramer-Wold device. From the equation (26) in Kleptsyna et

al. (2000b), it follows that

Lϵ(u) =
1

ϵ

∫ T

0
∆tdνt −

1

2ϵ2

∫ T

0
∆2

tdt

=
1

ϵ

∫ T

0
(∆t − ϵu ζt(θ, x))dνt +

1

ϵ

∫ T

0
ϵu ζt(θ, x)dνt
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− 1

2ϵ2

∫ T

0
∆2

tdt

= I1 + I2 + I3 (say).

Note that the process {ν(t), 0 ≤ t ≤ T} is the innovation process which is a Wiener process.

Observe that

E(I21 ) =
1

ϵ2

∫ T

0
Eθ[∆t − ϵu ζt(θ, x)]

2dt = o(1)(4. 3)

as ϵ→ 0 by equations (3.1) to (3.3),(4.1) and (4.2) and hence I1 = op(1). Note that

I2 =

∫ T

0
uζt(θ, x)dνt

is a Gaussian random variable with mean zero and variance
∫ T
0 u2[ζt(θ, x)]

2 dt. Furthermore

I3 = − 1

2ϵ2

∫ T

0
∆2

tdt

= − 1

2ϵ2

∫ T

0
(∆t − ϵu ζt(θ, x) + ϵu ζt(θ, x))

2dt

= − 1

2ϵ2

∫ T

0
[(∆t − ϵu ζt(θ, x))

2 + (ϵu ζt(θ, x))
2 + 2(∆t − ϵu ζt(θ, x))ϵu ζt(θ, x)]dt

= − 1

2ϵ2

∫ T

0
(ϵu ζt(θ, x))

2dt+ op(1).

As a consequence of the above computations, we observe that, as ϵ→ 0,

1

ϵ2

∫ T

0
∆2

tdt =
1

ϵ2

∫ T

0
[(θ + ϵu)πt(θ + ϵu,X)− θπt(θ,X)]2dt

= u2
∫ T

0
[ζt(θ, x)]

2dt+ op(1)

and

1

ϵ

∫ T

0
∆tdνt =

1

ϵ

∫ T

0
[(θ + ϵu)πt(θ + ϵu,X)− θπt(θ,X)]dνt

= u

∫ T

0
ζt(θ, x)dνt + op(1)

= uψ + op(1)

as ϵ → 0 where ψ is a Gaussian random variable with mean zero and variance σ2(θ). Hence

the random variable Lϵ(u) is asymptotically Gaussian with mean −(1/2)σ2(θ)u2 and variance

σ2(θ)u2.
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We have proved the convergence of the univariate distributions of the random process

{Lϵ(u), u ∈ Kθ} as ϵ→ 0, after proper scaling. Convergence of all the other finite dimensional

distributions of the random field {Lϵ(u), u ∈ Kθ}, after proper scaling, as ϵ → 0, follows by

an application of the Cramer-Wold device. In order to prove that a sequence of k-dimensional

random vectors Xn converge in law to a k-dimensional random vector X as n → ∞, it is

sufficient to prove that the sequence of random variables λ′Xn converges in law to the random

variable λ′X for all λ ∈ Rk. This is known as the Cramer-Wold technique for converting the

problem of the finite dimensional convergence to convergence of one-dimensional random

variables. Similar ideas have been applied earlier in proving the weak convergence of the

processes. See, for instance, Fokianos and Newmann (2013)). We can use this technique to

prove the convergence of the finite-dimensional distributions to complete the proof of the

lemma.

We now state two lemmas which will be used in the following computations. For proofs

of these lemmas, see Lemmas 5.2 and 5.3 in Mishra and Prakasa Rao (2014).

Lemma 4.2: Let {Dt, 0 ≤ t ≤ T} be a random process such that sup0≤t≤T E(D4
t ) ≤ γ <∞.

Then, for 0 ≤ θ2 ≤ θ1 ≤ T,

E([

∫ θ1

θ2
Dtdt]

4) ≤ |θ1 − θ2|3
∫ θ1

θ2
E[D4

t ]dt ≤ γ|θ1 − θ2|4.

The next lemma gives an inequality for the 4-th moment of a stochastic integral with

respect to a martingale.

Lemma 4.3: Let the process {ft, 0 ≤ t ≤ T} be a random process adapted to a square

integrable martingale {Mt,Ft, t ≥ 0} with the quadratic variation < M >t such that∫ T

0
E(f4s )d < M >s<∞.

Then

E((

∫ T

0
ftdMt)

4) ≤ 36 < M >T

∫ T

0
E(f4t )d < M >t .

and, in general, for 0 ≤ θ2 ≤ θ1 ≤ T,

E[(

∫ θ1

θ2
ftdMt)

4] ≤ 36(< M >θ1 − < M >θ2)

∫ θ1

θ2
E[f4t ]d < M >t .
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Lemma 4.4: Let Γϵ(u) = exp{Lϵ(u)}. Then, for any R > 0, there exist a constant C > 0

such that

Eθ

∣∣∣∣Γ 1
4
ϵ (u2)− Γ

1
4
ϵ (u1)

∣∣∣∣4 ≤ C(u1 − u2)
4, |ui| ≤ R, i = 1, 2.

Proof : Let −R ≤ u1, u2 ≤ R for some R > 0. Let

δt = (θ + ϵu1)πt(θ + ϵu1, X)− (θ + ϵu2)πt(θ + ϵu2, X)

and

δ̄t = ϵ(u1 − u2)ζ̄t(θ, x).

Recall the notation θ + ϵu1 = β1, θ + ϵu2 = β2 used earlier. Let

Rt = exp[
1

4ϵ

∫ t

0
δsdνs −

1

8ϵ2

∫ t

0
δ2sds], R0 = 1.

Note that the process Rt is the process

(
dPβ1

dPβ2

(X)

) 1
4

and, by the Ito formula, we have

dRt = − 3

(32)ϵ2
δ2tRtdt+

1

4ϵ
δtRtdνt.

Hence

Rt = 1− 3

(32) ϵ2

∫ t

0
δ2sRsds+

1

4 ϵ

∫ t

0
δsRsdνs, 0 ≤ s, t ≤ T

Note that

Eθ

∣∣∣∣Γ 1
4
ϵ (u2)− Γ

1
4
ϵ (u1)

∣∣∣∣4
= Eθ(

dPβ2

dPθ
|1−RT |4) = Eβ2(|1−RT |4)

≤ C
1

ϵ8
Eβ2

∣∣∣∣∣
∫ T

0
δ2tRtdt

∣∣∣∣∣
4

+ C
1

ϵ4
Eβ2

∣∣∣∣∣
∫ T

0
δtRtdνt

∣∣∣∣∣
4

where C is an absolute constant. In order to get the bounds for the expectations of the

integrals in the above inequality, we now use the Lemmas 4.2 and 4.3.
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Let us now estimate the term

Eβ2

∣∣∣∣∣
∫ T

0
δ2tRtdt

∣∣∣∣∣
4

.

Note that

I1 ≡ Eβ2

∣∣∣∣∣
∫ T

0
δ2tRtdt

∣∣∣∣∣
4

≤ cT 3
∫ T

0
Eβ2 |δ2tRt|4dt

≤ cT 3
∫ T

0
Eβ1 |δ2t |4dt

≤ cT 8−8H sup
θ,0≤t≤T

Eθ[δ
8
t ]

≤ cϵ8(u2 − u1)
8.

Let us now estimate the term

I2 ≡ Eβ2 |
∫ T

0
δ2tRtdνt|4.

Observe that

I2 ≤ cwH
t

∫ T

0
Eβ2 |δtRt|4dt

≤ cwH
t

∫ T

0
Eβ2 |δtRt|4dt

≤ cT 2−2H
∫ T

0
Eβ1 |δt|4dt

≤ c(u1 − u2)
4ϵ4.

Combining the above estimates, we obtain that

sup
|ui|≤R,|vi|≤R

(u1 − u2)
−4Eθ|Γ1/4

ϵ (u2)− Γ1/4
ϵ (u1)|4 < c <∞

which proves the tightness from the results in Prakasa Rao (1975) or Neuhaus (1971).

As a consequence of Lemma 4.4, it follows that the family of probability measures gen-

erated by the processes {Γ
1
4
ϵ (u), u ∈ Kθ} on CKθ

with uniform topology is tight from the

results in Billingsley (1968) (cf. Prakasa Rao (1987)) and hence the family of probability

measures generated by the processes {Lϵ(u), u ∈ Kθ} on CKθ
is tight.

12



Lemmas 4.1 and 4.4 together imply that that the family of probability measures gener-

ated by the processes {Lϵ(u, u ∈ Kθ} on CKθ
converge weakly to the probability measure

generated by the processes {L0(u), u ∈ Kθ} on CKθ
from the general theory of weak con-

vergence of probability measures on complete separable metric spaces(cf. Billingsley (1968),

Parthasarathy (1967), Prakasa Rao (1987) and Ibragimov and Khasminskii (1981)). This

completes the proof of Theorem 3.2.

The following maximal inequality is proved in Lemma 5.6 in Mishra and Prakasa Rao

(2014) using the Slepian’s lemma (cf. Leadbetter et al. (1983) and Matsui and Shieh (2009)).

We will use it in the sequel.

Lemma 4.5: Let WH be a fractional Brownian motion with Hurst index H. For any λ > 0,

E[exp{λ max
0≤t≤T

|WH
t |}] ≤ 1 + λ

√
2πT 2H exp{λ

2T 2H

2
}.

We now apply Lemma 4.5 to get the following result.

Lemma 4.6: Let Γϵ(u) = exp{Lϵ(u)}, u ∈ R. Then, for any compact set K ⊂ Θ, and for

any 0 < p < 1, there exists a positive constant C such that

sup
θ∈K

Eθ[(Γϵ(u))
p] ≤ e−C u2

(4. 4)

for all u ∈ R.

Proof: Now, for any 0 < p < 1, we will now estimate Eθ,τ (Γϵ(u))
p. For convenience, let u ∈ R

and v > 0 and let

F1 ≡
∫ T

0
∆tdνt

and

F2 ≡
∫ T

0
∆2

tdt.

Let q be such that p2 < q < p. Then

Eθ[(Γϵ(u))
p] = Eτ [exp{

p

ϵ
F1 −

p

2ϵ2
F2}]

= Eτ [exp{
p

ϵ
F1 −

q

2ϵ2
F2 −

(p− q)

2ϵ2
F2}].

13



Let

G1 = exp{−(p− q)

2ϵ2
F2}

and

G2 = exp{p
ϵ
F1 −

q

2ϵ2
F2}.

Then

Eθ[(Γϵ(u))
p] = Eθ[G1G2]

≤ (Eθ[G
p1
1 ])1/p1(Eθ[G

p2
2 ])1/p2

by the Holder inequality for any p1 and p2 such that p2 > 1 and 1
p1

+ 1
p2

= 1. Choose

p2 =
q
p2
> 1. Then p1 =

q
q−p2

. Observe that

Eθ[G
p2
2 ] = Eθ[exp{p2(

p

ϵ
F1 −

q

2ϵ2
F2)}]

= Eθ[exp{
q

p2
(
p

ϵ
F1 −

q

2ϵ2
F2)}]

= Eθ[exp{
1

ϵ

q

p
F1 −

1

2ϵ2
q2

p2
F2}].

The random variable, under the expectation sign in the last line, is the Radon-Nikodym

derivative of two probability measures which are absolutely continuous with respect to each

other by the Girsanov’s theorem for martingales. Hence the expectation is equal to one.

Hence

Eθ[(Γϵ(u))
p] ≤ (E[exp{−p1(p− q)

2ϵ2
F2}])1/p1

= (E[exp{−γϵ−2F2}])1/p1 .

where γ = q(p−q)
2(q−p2)

> 0. Let us now estimate Eθ[e
−γϵ−2F2 ]. Let

∆̄t = (θ + ϵu)xt(θ + ϵu)− θxt(θ), 0 ≤ t ≤ T.

Applying the inequality

a2 ≥ b2 − 2|b(a− b)|,

it follows that

Eθ[e
−γϵ−2F2 ] ≤ exp{−γϵ−2

∫ T

0
∆̄2

tdt} ×

14



×Eθ[exp{2γϵ−2(

∫ T

0
(|(πt(θ + ϵu,Q)− ϵ−1(θ + ϵu)xt(θ + ϵu)|+

+|(πt(θ,Q)− ϵ−1θxt(θ)|)ϵ−1|(θ + ϵu)xt(θ + ϵu)− θxt(θ)|dt}].

We now get an upper bound on the term under the expectation sign on the right side of the

above inequality. Observe that there exists a a constant c > 0, such that,∫ T

0
[πt(θ,Q)− ϵ−1θxt(θ)]

2 dt

≤ cϵ2[

∫ T

0
dt] sup

0≤t≤T
|νt|2

≤ cϵ2T sup
0≤t≤T

|νt|2

for some constant c > 0 possibly depending on T and Θ where {νt, 0 ≤ t ≤ T} is the

innovation Wiener process. An application of the Cauchy-Schwartz inequality implies that

sup
θ,θ′,θ+ϵu∈Θ,0<ϵ<ϵ0

[

∫ T

0
ϵ−1|(θ + ϵu)xt(θ + ϵu)− θxt(θ)||πt(θ′, Q)− ϵ−1θ′xt(θ

′)|dt]2

≤ C0ϵ
4u2T sup

0≤t≤T
|νt|2

for some constant C0 > 0. Hence

sup
θ,θ′=θ+ϵu∈Θ,0<ϵ<ϵ0

[

∫ T

0
|ϵ−1(θ + ϵu)xt(θ + ϵu)− ϵ−1θxt(θ)||πt(θ′, Q)− ϵ−1θ′xt(θ

′)|dt]

≤ C1ϵ
2|u| sup

0≤t≤T
|νt|.

for some constant C1 > 0. Therefore

sup
θ,θ+ϵu∈Θ,0<ϵ<ϵ0

Eθ[exp{2γϵ−2(

∫ T

0
|πt(θ + ϵu,Q)− ϵ−1(θ + ϵu)xt(θ + ϵu)|

+|(πt(θ,Q)− ϵ−1θxt(θ))ϵ
−1((θ + ϵu)xt(θ + ϵu)− θxt(θ))|dt}]

≤ Eθ[exp{Cγ|u| sup
0≤t≤T

|νt|}]

≤ 1 + γC|u|
√
2πT exp{cγ

2Tu2

2
}
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for some positive constants C and c depending on T and the set Θ by Lemma 6.5. Applying

arguments similar to those in Lemma 2.4 in Kutoyants (1994), we get that

sup
θ∈K,0<ϵ<ϵ0

Eθ[Γ
p
ϵ (u)] ≤ e−C u2

for some positive constant C > 0 depending on T and Θ.

An application of Lemma 4.6, proved above, shows that the maximum likelihood estimator

θ̂ϵ will lie in a compact set K with probability tending to one as ϵ→ 0 from Theorem 5.1 in

Chapter 1, p.42 of Ibragimov and Khasminskii (1981).

We now give a proof of Theorem 3.1 stated above.

Proof of Theorem 3.1: Let CK denote the family of continuous functions defined on a compact

set K inR. In view of Theorem 3.2, it follows that the family of probability measures generated

by the random processes {Lϵ(u), u ∈ K}, ϵ > 0 on CK converge weakly to the probability

measure generated by the random process {L0(u), u ∈ K} on CK as ϵ → 0. Let ûϵ denote

the infimum of the points of the maxima of the random field {Lϵ(u), u ∈ K}, ϵ > 0 on CK .

Let u0 denote the location of the maxima of the process {L0(u), u ∈ K} on CK . The location

u0 of the maxima is unique almost surely by the property of Gaussian random processes.

Since the random process {Lϵ(u), u ∈ K}, ϵ > 0 on CK converge weakly to the random field

{L0(u), u ∈ K} on CK as ϵ → 0, by the continuous mapping theorem, it follows that the

distribution of θ̂ϵ appropriately normalized converges in law to the distribution of u0 by the

continuous mapping theorem (cf. Billingsley (1968)). Lemma 4.6 implies that the random

variable ûϵ = ϵ−1(θ̂ϵ − θ) ∈ K with probability tending to one as ϵ→ 0. Applying arguments

similar to those in Theorem 10.1 in Chapter II, p.103 of Ibragimov and Khasminskii (1981)

(cf. Prakasa Rao (1968)), we obtain the following result. Let θ be the true parameter. As

a consequence of the arguments and the discussion given above, it follows that the random

variable

ûϵ = ϵ−1(θ̂ϵ − θ)

converges in law to the distribution of the random variable u0, the location of the maximum

of the random field {L0(u),−∞ < u, v < ∞}, as ϵ → 0, which is the Gaussian distribution

with mean zero and variance σ−2.
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