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1 Introduction

Chebyshev’ inequality gives a bound on the closeness of a real-valued random variable X to

its mean µ in terms of its variance σ2 whenever it is finite. In fact, for any ϵ > 0,

P (|X − µ| ≥ ϵ) ≤ min(1,
σ2

ϵ2
).(1. 1)

Although this inequality is an important inequality to explicitly compute distribution-free

probability bounds based on the mean µ and variance σ2 of the random variable X, it can

not be used if the mean and variance are not known. One method that is suggested is to

estimate the mean and variance from the sample and to substitute them in the inequality

given above. This method might not give reliable bounds for the probability on the left side

of equation (1.1) in case the estimators for µ and σ2 are not good. Saw et al. (1984) studied

this problem and obtained a empirical version of the Chebyshev’s inequality. Let X1, . . . Xn

be independent and identically distributed (i.i.d.) random variables and

X̄n =
1

n

n∑
i=1

Xi

denote the sample mean and

s2n =
1

n− 1

n−1∑
i=1

(Xi − X̄n)
2
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denote the sample variance. Let Xn+1 be a random variable independent of the sample

X1, . . . , Xn but identically distributed as the random variable X1. The following result is due

to Saw et al. (1984).

Theorem 1.1: Suppose X1, . . . , Xn+1 are i.i.d. random variables. Then, for any ϵ > 0,

P (|Xn+1 − X̄n| ≥ ϵsn) ≤ min(1,
(n2 − 1 + nϵ2)

n2ϵ2
).

This result is a slight variant of the result in Saw et al. (1984) and is as given in Stellato

et al. (2016).

Stellato et al. (2016) have recently obtained a multivariate version of the Chebyshev’s

inequality with estimated mean and variance. They obtained a generalization of the result

of Saw et al. (1984) under the assumption that the observed sample consists of independent

and identically distributed random vectors. Their result is as follows.

Theorem 1.2: Suppose X1, . . . ,Xn+1 are i.i.d. d-dimensional random vectors with n ≥ d.

Let

µn =
1

n

n∑
i=1

Xi

and

Σn =
1

n− 1

n∑
i=1

(Xi − µn)(Xi − µn)
′.

Suppose the matrix Σn is non-singular. Then, for any ϵ > 0,

P ((Xn+1 − µn)
′Σ−1

n (Xn+1 − µn) ≥ ϵ2) ≤ min(1,
d(n2 − 1 + nϵ2)

n2ϵ2
).

It can be seen that the upper bound in the inequality given above tends to min(1, d
ϵ2
) as

n → ∞.

2 Main Result

It is now known that results similar to those discussed Section 1 are also of interest and im-

portant for random variables which are function-valued as they will have possible applications

in functional data analysis (cf. Ramsay and Silverman (1997)) which deals with modeling

and analysis of observations which are function-valued. In many cases, the function space is

the L2-space of square integrable functions on the real line which is a Hilbert space.
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Let (Ω,F , P ) be a probability space. Let H be a real separable Hilbert space and let

(x,y) denote the inner product between x and y for x,y ∈ H. Let ||x|| denote the norm of x

for x ∈ H. Let X be a random element defined on (Ω,F , P ) and taking values in the Hilbert

space H. Suppose µ is the probability measure of the random element X. For properties of

probability measures on a Hilbert space H, see Parthasarathy (1967). Suppose that∫
H
||x||2dµ(x) < ∞.(2. 1)

The covariance operator S of µ is the Hermitian operator determined uniquely by the

quadratic form

(Sy,y) =

∫
H
(x,y)2dµ(x).(2. 2)

A positive semi-definite Hermitian operator S is called an S-operator if it has finite trace,

that is, for some orthonormal basis {ei, i ≥ 1},
∞∑
i=1

(Sei, ei) < ∞.(2. 3)

If the above inequality holds for some orthonormal basis of H, then it will hold for every

orthonormal basis of H.

It is obvious that ∫
H
||x||dµ(x) < ∞(2. 4)

under the condition stated in (2.2). Then∫
H
(x,y)dµ(x)

is defined for each y ∈ H and

|
∫
H
(x,y)dµ(x)| ≤ ||y||

∫
H
||x||dµ(x) < ∞.(2. 5)

Therefore the functional
∫
H(x,y)dµ(x) is a bounded linear functional with the norm bounded

by
∫
H ||x||µ(dx). Hence there exists an element x0 ∈ H such that

(x0,y) =

∫
H
(x,y)dµ(x),y ∈ H

by the Riesz representation theorem (cf. Dunford and Schwartz (1958); Kolmogorov and

Fomin (1975), p. 188) The element x0 is called the expectation of the random element X

and is denoted by
∫
H x µ(dx). Without loss of generality, suppose that x0 = 0 where 0 is the

identity element in H.
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The following theorem is proved in Prakasa Rao (2010) for random elements taking values

in a real separable Hilbert space H.

Theorem 2.1: Suppose X is a random element taking values in a real sepearable Hilbert

space H with expectation zero, covariance operator S, and probability distribution η such

that ∫
H
||x||2dη(x) < ∞.

Then, for every ϵ > 0,

P [(SX,X) > ϵ] ≤ [
∫
H ||x||2dη(x)]2

ϵ
.

A more general version of Theorem 2.1 can be obtained in the following way. Let γ be a

probability measure on the Borel σ-algebra generated by the norm topolgy on the space H.

Further suppose that ∫
H
||z||2dγ(z) < ∞.(2. 6)

It is known that the bilinear form

B(x,y) =

∫
H
(x, z)(y, z)dγ(z),x,y ∈ H

determines a unique compact linear operator Sγ from H into H, (cf. Dunford and Schwartz

(1958)) such that for all x,y ∈ H,

(Sγx,y) = B(x,y)

and the following result can be obtained extending Theorem 2.1.

Theorem 2.2: Let X be a random element taking values in a real separable Hilbert space

H with probability distribution µ on the Borel σ-algebra generated by the norm on the space

H. Further suppose that the probability measures µ and γ satisfy the inequality of the type

(2.6). Then, for every ϵ > 0,

P ((SγX,X) ≥ ϵ) ≤
∫
H ||z||2dµ(z)

∫
H ||z||2dγ(z)

ϵ
.

Proof : Since (Sγx,x) ≥ 0 for all x ∈ H, by Markov’s inequality, it follows that

P ((SγX,X) ≥ ϵ) ≤ E((SγX,X))

ϵ
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=
E(

∫
H(X, z)2dγ(z))

ϵ

≤ E(||X||2)
∫
H ||z||2dγ(z)
ϵ

.

Remarks: If γ = µ is the probability distribution of the random elementX, then the result in

Theorem 2.2 reduces to the result in Theorem 2.1. Furthermore, if H is infinite-dimensional,

then Sµ = Sγ is compact and will not have a bounded inverse. We take this opportunity to

point out that the inequality in the equation (2.11) in Theorem 2.2 in Prakasa Rao (2010)

does not hold in the case of infinite-dimensional Hilbert space.

We now extend the result obtained by Stellato et al. (2016) for real separable Hilbert-

space valued random elements with possible applications to functional data analysis. Note

that the method used by Stellato et al. (2016) can not be generalized and in fact the upper

bound as obtained in Theorem 1.3 (cf. Stellato et al. (2016)) tends to infinity as d → ∞ and

hence of no relevance for obtaining upper bounds for probability of an event.

Suppose {Xi, 1 ≤ i ≤ n} are independent and identically distributed random elements

taking values in a separable Hilbert space H with mean x0 and with the same covariance

operator S. Suppose further that the mean x0 and the covariance operator S are unknown.

Let

X̄n = n−1(X1 . . .+Xn).(2. 7)

Then X̄n is a random element taking values in H. We call X̄n as the empirical mean of the

random elements {Xi, 1 ≤ i ≤ n}. Let

Sn =
1

n

n∑
i=1

(Xi − X̄n)⊗ (Xi − X̄n)(2. 8)

where ⊗ denotes the tensor operator u⊗ v(.) = (u, .)v for u,v ∈ H. Here (x,y) denotes the

inner product between the elements x,y ∈ H and the norm of element x in the Hilbert space

H is denoted by ||x|| as indicated earlier. The operator Sn is called the empirical covariance

operator. Let Xn+1 be a random element independent of the i.i.d. sample {Xi, 1 ≤ i ≤ n}
but identically distributed as X1. Let ϵ > 0. We will now obtain an upper bound for the

probability

P ((Sn(Xn+1 − X̄n), (Xn+1 − X̄n)) ≥ ϵ)
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for any ϵ > 0. Note that, for any element y ∈ H,

(Sny,y) =
1

n

n∑
i=1

((Xi − X̄n)⊗ (Xi − X̄n)y,y)

=
1

n

n∑
i=1

[(Xi − X̄n,y)]
2

=

∫
H
[(z− X̄n,y)]

2νn(dz)

where νn is the counting measure assigning probability 1
n to each of the elements Xi, 1 ≤ i ≤

n. Let ϵ > 0 and η denote the probability measure of the random element X1 induced by

the probability measure P on the space H associated with the Borel-σ algebra generated by

the norm topology on the Hilbert space H. Let H(n) denote the tensor product of the space

H over n copies of the space H. Let η(n)(.) denote the product measure generated by the

random vector (X1, . . . ,Xn) and

Dϵ = {z ∈ H : (Sn(z− X̄n), (z− X̄n)) ≥ ϵ}, ϵ > 0.

Then

P (Dϵ) =

∫
Dϵ⊗Hn

dη(z)dη(n)(x1, . . . ,xn)

≤ 1

ϵ

∫
Dϵ⊗H(n)

(Sn(z− x̄n), (z− x̄n)) dη(z)dη(n)(x1, . . . ,xn)

≤ 1

ϵ

∫
H(n+1)

(Sn(z− x̄n), (z− x̄n)) dη(z)dη(n)(x1, . . . ,xn)

=
1

ϵ

∫
H
[

∫
H(n)

{
∫
H
(y − x̄n, z− x̄n)

2νn(dy)}dη(n)(x1, . . . ,xn)]dη(z)

≤ 1

ϵ

∫
H
[

∫
H(n)

{
∫
H
||y − x̄n||2||z− x̄n||2νn(dy)}dη(n)(x1, . . . ,xn)]dη(z)

=
1

ϵ

∫
H
[

∫
H(n)

||z− x̄n||2{
∫
H
||y − x̄n||2νn(dy)}dη(n)(x1, . . . ,xn)]dη(z)

=
1

ϵ

∫
H
[

∫
H(n)

||z− x̄n||2{
||x1 − x̄n||2 + . . .+ ||xn − x̄n||2

n
}dη(n)(x1, . . . ,xn)]dη(z)

=
1

ϵ

∫
H
[

∫
H(n)

||z− x̄n||2||x1 − x̄n||2dη(n)(x1, . . . ,xn)]dη(z)

since X1, . . . ,Xn are i.i.d. random elements.

Hence

P (Dϵ) ≤
1

ϵ
E[||Xn+1 − X̄n||2||X1 − X̄n||2].
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It is easy to see that

Xn+1 − X̄n =
n+ 1

n
(Xn+1 − X̄n+1).

Hence

P (Dϵ) ≤ (
n+ 1

n
)2
1

ϵ
E[||Xn+1 − X̄n+1||2||X1 − X̄n||2]

= (
n+ 1

n
)2
1

ϵ
E[||Xn+1 − X̄n+1||2||Xn − X̄n||2]

since X1, . . . ,Xn are i.i.d. random elements

and we obtain the following theorem.

Theorem 2.3: Suppose Xi, 1 ≤ i ≤ n+ 1 are i.i.d. random elements taking values in a real

separable Hilbert space such that

E[||Xn+1 − X̄n+1||2||Xn − X̄n||2] < ∞.

Then, for every ϵ > 0,

P ((Sn(Xn+1 − X̄n), (Xn+1 − X̄n)) ≥ ϵ) ≤ min{1, (n+ 1

n
)2
1

ϵ
E[||Xn+1 − X̄n+1||2||Xn − X̄n||2]}.

Suppose, in addition, the random variable ||X|| has 4-th moment, that is,∫
H
||x||4η(dx) < ∞.

Let

γ2n = E[||Xn − X̄n||4].

Then

γ2nn
4 = E[||X1 −Xn + . . .+Xn −Xn||4]

≤ E[(||X1 −Xn||+ . . .+ ||Xn −Xn||)4]

≤ n3
n∑

i=1

E[||Xi −Xn||4]

(by the cr-inequality, see Lin and Bai (2010), p.97)

= n4E[||X1 −Xn||4]

(since X1, . . . ,Xn are i.i.d. random elements)
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≤ 8n4(E||X1||4 + E||Xn||4)

(by the cr-inequality, see Lin and Bai (2010). p.97)

= 16n4E[||X1||4] < ∞

(since X1,X2 are identically distributed random elements).

Hence

γ2n ≤ 16E[||X1||4] < ∞(2. 9)

for every n ≥ 1. We will now compute a bound on the term

ζn = E[||Xn+1 − X̄n+1||2||Xn − X̄n||2].

Note that

ζn ≤ (E[||Xn+1 − X̄n+1||4] E[||Xn − X̄n||4])1/2

= [γ2n+1γ
2
n]

1/2

≤ 16E[||X1||4] (by the equation (2.9))

Hence

P ((Sn(Xn+1 − X̄n), (Xn+1 − X̄n)) ≥ ϵ) ≤ min{1, (n+ 1

n
)2
16

ϵ
E[||X1||4]}(2. 10)

and we have the following result.

Theorem 2.4: Suppose Xi, 1 ≤ i ≤ n+ 1 are i.i.d. random elements taking values in a

separable Hilbert space such that E[||X1||4] < ∞. Then, for every ϵ > 0,

P ((Sn(Xn+1 − X̄n), (Xn+1 − X̄n)) ≥ ϵ) ≤ min{1, (n+ 1

n
)2
16

ϵ
E[||X1||4]}.(2. 11)

3 Application :

Let X = {X(t), 0 ≤ t ≤ 1} be a second order stochastic process with sample paths

in the Hilbert space L2[0, 1] with probability one. Suppose that E(X(t)) = m(t) and

Cov(X(t), X(s)) = r(t, s) where the mean function m(.) and the covariance function r(t, s)

are unknown and

E[(

∫ 1

0
X2

1 (t)dt)
2] < ∞.
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Suppose we take repeated independent observations Xi, 1 ≤ i ≤ n of the process X. Let

mn(t) =
1

n

n∑
i=1

Xi(t).(3. 1)

Then the function mn(.) is an estimator of the function m(.). As an application of Theorem

2.4, we get the following result: for any ϵ > 0,

P (
1

n

n∑
i=1

[

∫ 1

0
(Xi(t)−mn(t))(Xn+1 −mn(t))dt]

2 ≥ ϵ) ≤ (
n+ 1

n
)2
16

ϵ
E[(

∫ 1

0
X2

1 (t)dt)
2].

4 Remarks:

The upper bound obtained in Theorem 2.4 is not distribution free as it depends on the

fourth moment of the distribution of the random elementX1. It would be interesting to check

whether an upper bound can be obtained which is distribution free as in the finite dimensional

case obtained in Saw et al. (1984) and Stellato et al. (2016).

References :

Dunford, N. and and Schwartz, J.T. (1958)Linear Operators, Part I: General Theory, In-

terscience Publishers Inc, New York.

Kolmogorov, A.N and Fomin, S.V. (1975) Introductory Real Analysis, Translated and Edited

by Richard A. Silverman, Dover Publications, Inc., New York.

Lin, Zhengyan and Bai, Zhidong (2010) Probability Inequalities, Science Press, Beijing and

Springer, Berlin.

Parthasarathy, K. R. (1967) Probability Measures on Metric Spaces, Academic Press, Lon-

don.

Prakasa Rao, B.L.S. (2010) Chebyshev’s inequality for Hilbert-space-valued random ele-

ments, Statist. Probab. Lett., 80, 1039-1042.

Ramsay, J. and Silverman, B.W.(1997) Functional Data Analysis, Springer, Berlin.

Saw, J.G., Yang, M.C.K., and Mo, T.C. (1984) Chebyshev’s inequality with estimated mean

and variance, The American Statistician, 38, 130-132.

9



Stellato, B., Van Parys, Bart P.G., and Goulart, Paul J. (2016) Multivariate Chebyshev

inequality with estimated mean and variance, To appear The American Statistician,

DOI:10.1080/00031305.2016.1186559

10


