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Abstract 

 

Recent technological advances in experimental biology have yielded massive amounts of 

biological data which made its analysis a highly onerous task. Networks are inestimable models 

for ameliorated analysis and efficient interpretation of biological systems and the mathematical 

discipline which underpins the study of these complex biological networks is graph theory. In 

our present work we have tried to accentuate the importance of applications of graph theory on 

biological systems through the prediction of Human essential genes utilizing the combined 

centrality and machine learning approach. Of the predicted essential genes 854 genes were found 

to be in common with 1950 known essential genes. The essentiality of the remaining genes was 

also corroborated through the literature survey and thus our work directs the attention of 

application of graph theoretical approaches on biological systems. 
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1. Introduction 

Majority of the systems either available in nature or manmade are complex. Understanding these 

complex systems requires a bottom up approach i.e. breaking the system into small elementary 

constituents. Mapping out the interactions between these components can be characterized as 

network. Historically, the study of networks has been mainly the domain of a branch of discrete 

mathematics known as graph theoryhas become the fundamental pillars of discrete mathematics. 

In view of graph theory, network can be defined as any real system natural or artificial that can 

be completely described by a mathematical graph, an object composed of vertices connected by 

edges which can be mathematically represented as a graph composed of vertices ‗V‘ and edges 

‗E‘ is G(V,E). Many different network models have been proposed to address properties of 

complex systems, some of the important ones being the random network model proposed by 

Erdos and Renyi, the small world network proposed by Watts and Strogatz, and the scale-free 

model proposed by Barabasi and Albert. The failure in studying the real world networks further 

paved the way for Watts and Strogatz to propose the ‗small world network‘, a network with a 

small diameter and high clustering. More recently, Barabasi and Albert have proposed the scale 

free model, in which the degree distribution which is nothing but the property of resilience of 

networks to the removal of their vertices possesses power law. The networks can also be 

classified as directed and undirected networks. A network is directed if all of its edges are 

directed and undirected network can be represented by a directed one having two edges between 

each pair of connected vertices, one in each direction. The networks can also be further classified 

as weighted and unweighted networks depending on the weights assigned to their edgesUtilizing 

graph theory concepts networks enable a simple and uniform representation of complex 

structures, processes and finds wide range of applications in various fields such as social, 

physical and biological sciences [1-8]. 

Mathematically, a network or a graph can be represented in the form of a matrix called 

Adjacency matrix (A) in which aij=1 if ‗i‘ and ‗j‘ are connected with an edge. For undirected 

network, the adjacency matrix is symmetric square matrix whereas for directed network it is 

asymmetric square matrix. For an unweighted network, the weights are unknown and are 

represented as ―unit weight‖ i.e. 1 to all the edges of the network. It just represents the 

connection between two nodes. In the weighted network, the weights are given to the edges 



between a pairs of nodes. The weights in numeric for the edges may represent distance, 

transmission speed, reaction rate, interaction time etc.The topological properties such as degree 

distribution, clustering coefficients, centrality measures, community structures, modularity etc. 

of the network models help us to understand the overall properties through their structure [9-12]. 

The characteristicsof individual nodes are essential during the analysis of the importance of 

nodes in terms of connectivity, information transfer capability and closeness toother nodes etc. In 

order to establish the individual properties of a node centrality measures have been proposed. 

The graph centrality measure concept plays a vital role in identifying the potential nodes that are 

functionally important in a network. In the recent past, various centrality measures such as 

degree, closeness, betweenness, Eigen vector, information centrality etc. have been developed 

for predicting the potentiality of a node [13-18]. 

 All the biological networks are scale-free in nature, which suggest that only a small number of 

nodes are highly connected, whereas a large number of nodes have fewer connections. 

Consequently, onlythe small number of nodes that have many connections,referred to as ‗hubs‘, 

control the overall robustness of thenetwork. The above mentioned centrality measures aids us in 

analyzing the various underlying process and robustness of the biological networks and also 

identifies the key players in biological processes. A correlation between a node's structural 

importance in the network and its functional importance commonly referred as centrality-

lethality rule is well understood using centrality concepts which were extensively studied. In 

biological networks, the high centralityproteins are likely to be coded by the essential genes. 

Centrality measures such as degree, closeness and betweenness measures aids in the 

identification of the nodes that correlates with gene essentiality [19]. The centrality measures 

taken individually capture different aspects of gene essentiality, but the combination of them 

yielded more accurate predictions than using only one of the measures. In our work we make use 

of method developed by Manimaran et al to identify the conditional essentiality of genes in 

human based on subnetworks of only those genes that are expressed under defined conditions 

[13]. In our earlier work, we have utilized the binary classification of Support vector machine 

(SVM) to identify the essential genes in E coli where both the positive and negative data sets 

were available. With the lack of availability of negative data sets in our study we make use of 

one class SVM for predicting the essential genes in human. The predicted essential genes further 

aids in identification of potential drug targets. 



2. Materials and methods 

2.1 Centrality measures 

The Human protein–protein interaction data was collected from the Human Protein Reference 

Database,HPRD which is a resource for experimentally derived manually curated scientific 

information about the human proteome including protein–protein interactions, post-translational 

modifications (PTMs) and tissue expression [20].The Human Protein-protein interaction (HPPI) 

network consists of 9,617 proteins with 39,240 edges. The interactions of HPPI were analyzed 

using the following three principalcentrality measures namely degree centrality, closeness 

centrality and betweenness centrality.The mathematical form of the centrality measures are 

asfollows (for N nodes) 

The degree centralityis based on the idea that important nodes are those with the largest number 

of edges to other nodes in the graph. The degree centrality of a node i is defined as  

𝐶𝑖
𝐷 =

𝑘𝑖

𝑁 − 1
=

 𝑎𝑖𝑗𝑗∈𝐺

𝑁 − 1
 

 

Where kiis the degree of node i. 

 

The closeness centralityof a node i is based on the concept of minimum distance or geodesic 

dij , i.e. the minimum number of edges traversed to get from i to j and is defined as  

𝐶𝑖
𝑐 = (𝐿𝑖)

−1 =
𝑁 − 1

 𝑑𝑖𝑗𝑗 ∈𝐺
 

Where Li is the average distance from i to all the other nodes. 

 

The betweenness centrality, in its basic version, is defined by assuming that the communication 

travels just along the geodesic. If njk is the number of geodesics linking two nodes jand k, and 

njk(i) is the number of geodesics linking the two nodes j and k that containnode i, the betweenness 

centrality of node i can be defined as  

𝐶𝑖
𝐵 =

1

 𝑁 − 1 (𝑁 − 2)
  

𝑛𝑗𝑘 (𝑖)
𝑛𝑗𝑘
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2.2 Machine learning approach 

Machine learning  can be defined as a as a set of methods that can automatically detect patterns 

in data, and then use the uncovered patterns to predict future data, or to perform other kinds of 

decision making under uncertainty. In machine learning, support vector machines (SVM) are 

supervised learning models with associated learning algorithms that analyze data and recognize 

patterns, used for classification and regression analysis. The SVM algorithm generally is a 

binary-class algorithm and requires both positive and negative datasets. But if there exits only 

one dataset i.e positive data set in such scenarios One-Class SVM should be considered. One-

Class SVM algorithm maps the data into a feature space H using an appropriate kernel function, 

and then trying to separate the mapped vectors from the origin with maximum margin. In our 

work we have used one class SVM using the LIBSVM package [21-23]. The scores of centrality 

measures were considered as input features for training and these input vectors were trained 

Radial Basis Function kernel. The optimal kernel parameters, cost C (10) and gamma G 

(0.0001), were obtained through grid search and the dataset trained with five-fold cross 

validation. 

The function to predict output using one class SVM is discussed as follows 

.Let x1, x2, x3….xlbe training samples belonging toone known class X, where X is a compact 

subset of R
N 

. Let Ø: X→H be a kernel map which transforms thetraining samples to another 

space. Then, to separate the dataset from the origin, one needs to solve the following 

quadraticprogramming problem: 

min
1

2
||𝑤||2 +

1

𝑣𝑙
 𝜉𝑖  

𝑙
𝑖=1 − 𝜌 

S.t. w Ø (xi) ≥ ρ - 𝜉𝑖  , i=1, 2, 3…..l,ξi ≥ 0 

Nonzero slack variables ξi are penalized in the objective function. The decision function 

corresponding to w and ρ is  

𝑓 𝑥 =W Ø (x)–ρ 

The above equation will be positive for most samples xi contained in the training set. V∈ (0, 1) is 

a parameter which controlsthe number of samples contained in the hyper sphere. 



3. Results and discussion 

We have constructed the Human protein –protein interaction network (HPPI) from the data 

collected from the HPRD database. After curation of the data sets, removal of self and 

palindromic interactions and removal of CGP islands the core Human PPI network is comprises 

of 9204 nodes with 36726 edges. The topological properties were also being calculated for the 

constructed HIPPI network the scaling exponent was observed to be 1.89 which indicates that the 

constructed network is scale free network and he same is depicted in Figure 1. Also the 

maximum degree and average degree were observed to be 296 and 14 respectively. 

 

Figure 1: The degree distribution of the HPPI network was observed to follow powerlaw with an 

exponent of γ = 1.89, exhibiting the scale-free nature. 

 

Among all the properties graph centrality measures aids in identification nodes that are 

functionally crucial/central in the network by ranking elements of a network. Identification of 

central nodes in biological networks paves way for delivering new hypotheses which in turn lead 

to invention of more rational approaches in experimental design. Different centrality measures 

scores and ranks the nodes based on different concepts. In case of protein-protein interaction 

network the centrality of a protein correlates with its essentiality. In our work we have used three 



different centrality measures degree, closeness and betweenness for predicting the essential 

genes in humans. Degree centrality emphasizes that a central node is involved in a large number 

of interactions. Closeness Centrality indicates important nodes that can communicate quickly 

withother nodes of the network. Betweenness Centrality shows that nodes which are intermediate 

between neighbors rank higher. Without these nodes, there would be no way for two neighbors 

to communicatewith each other. Thus, betweenness centrality shows important nodes that lie on 

a high proportion of paths between other nodes in the network [24]. The three centrality scores 

for each of the node were calculated for 9204 proteins of core network. The proteins were then 

ranked based on their centrality scores and compared the lists with 1950 known human 

essentialgenes. Interestingly, the majority of the essentialgenes were among those in top of any 

of the threecentrality lists, whereas only a few essential genes were found in the bottom. In order 

to nullify the deprivation of any essential gene that occurred in the bottom in terms of the 

rankingwe attempted to combine the threefeatures using one class SVM algorithm to predict 

gene essentiality based on combinations of the threecentrality measures.Thefeatures selected 

were the three network centrality measures,namely, degree centrality (DC), closeness centrality 

(CC) andbetweenness centrality (BC). The training data consisted of only a positive data set 

comprising of centrality measures for the 1950 known essential genes. Using this model, when 

predictions were made 3786 genes were predicted to be essential which implies that about 41% 

of the genes in HPPI network were found to be essential. A fivefold cross validation with 

accuracy 79.23% was obtained and 854 genes were found to be  in common  with 1950 known 

essential genes that served as positive training dataset. Also we have tried to corroborate the gene 

essentiality of the predicted genes through a literature survey. The annotation of some of the top 

ranking genes among the predicted essential genes for the vindication of their essentiality as 

indirectly provided by NCBI gene resource is as follows 

C3 known as Complement component C3 plays a central role in the activation of complement 

system. Its activation is required for both classical and alternative complement activation 

pathwaysproving its essentiality. Kininogen 1(KNG1) uses alternative splicing to generate two 

different proteins- high molecular weight kininogen (HMWK) and low molecular weight 

kininogen (LMWK) of which HMWK is essential for blood coagulation and assembly of the 

kallikrein-kinin system.The protein encoded plasminogen (PLG) is a secreted blood zymogen 

that is activated by proteolysis and converted to plasmin and angiostatin. Plasmin dissolves fibrin 



in blood clots and is an important protease in many other cellular processes while angiostatin 

inhibits angiogenesis and thus proves the essentiality of PLG. SKP1, S-phase kinase-associated 

protein 1 encodes a component of SCF complexes, which are involved in the regulated 

ubiquitination of specific protein substrates, which targets them for degradation by the 

proteasome. TYROBP known as TYRO protein tyrosine kinase binding protein encodes a 

transmembrane signaling polypeptide which may associate with the killer-cell inhibitory receptor 

(KIR) family and may act as an activating signal transduction element. The Golgi membrane 

proteinGOLM1 encodes type II Golgi transmembrane protein which processes proteins 

synthesized in the rough endoplasmic reticulum and assists in the transport of protein cargo 

through the Golgi apparatus. 

 Similarly the MMP2 matrix metallopeptidase 2 is involved in the breakdown of extracellular 

matrix in normal physiological processes, such as embryonic development, reproduction, and 

tissue remodeling, as well as in disease processes, such as arthritis and metastasis. The enzyme 

plays a role in endometrial menstrual breakdown, regulation of vascularization and the 

inflammatory response. The peroxisomal biogenesis factor 19PEX19 is necessary for early 

peroxisomal biogenesis. It acts both as a cytosolic chaperone and as an import receptor for 

peroxisomal membrane proteins (PMPs) which are essential for the assembly of functional 

peroxisomes. The gene APOA1 encodes Apo lipoprotein A-I, which is the major protein 

component of high density lipoprotein (HDL) in plasma. The protein promotes cholesterol efflux 

from tissues to the liver for excretion, and it is a cofactor for lecithin cholesterolacyltransferase 

(LCAT) which is responsible for the formation of most plasma cholesteryl ester.KCNB1 , 

potassium voltage-gated channel, Shab-related subfamily, member 1diverse functions include 

regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial 

electrolyte transport, smooth muscle contraction, and cell volume and hence proved its 

essentiality [25] . Thus our approach utilizing the integrative graph theory and machine learning 

algorithms has efficiently prioritized the essential genes in human.  

4. Conclusion 

The huge availability of biological data makes the analysis of biological systems more 

complex.Understanding these complex systems requires a bottom up approach i.e. breaking the 

complex system into small elementary constituents and mapping out the interactions between 



these components, can be characterized as network.The mathematical discipline which underpins 

the study of these complex biological networks is graph theory. Our work prioritizes the 

importance of applications graph theoretical approaches on biological networks by identification 

of essential genes in human protein- protein interaction network through network analysis. 
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