
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRRAO Advanced Institute of  Mathematics, 
Statistics and Computer Science (AIMSCS) 

Author (s):                Xiaoming Wang, Saumyadipta Pyne,  

                                    Irina Dinu   
                                     

Title of the Report:      Gene Set Enrichment Analysis for                                   

                                    Multiple Continuous Phenotypes 
  

Research Report No.: RR2014-05 

 
Date: February 28, 2014 

Prof. C R Rao Road, University of Hyderabad Campus,  
Gachibowli, Hyderabad-500046, INDIA. 

www.crraoaimscs.org 
 

Research Report 



1 

 

Gene Set Enrichment Analysis for Multiple Continuous 
Phenotypes  
 
Xiaoming Wang

1,2
, Saumyadipta Pyne

3
, Irina Dinu² 

 

¹ Department of Medicine, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1 

² School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 1C9 
3 

CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, Hyderabad, 

India; Public Health Foundation of India, Delhi, India 

 
 

ABSTRACT 

Motivation: Gene set analysis (GSA) methods test the association of sets of genes with 

phenotypes in gene expression microarray studies. While GSA methods on a single binary or 

categorical phenotype abound, little attention has been paid to the case of a continuous 

phenotype, and there are no methods to accommodate multiple and correlated continuous 

phenotypes. 

Results: We propose here an extension of the Linear Combination Test (LCT) to multiple 

continuous phenotypes, incorporating correlations among gene expressions of functionally 

related gene sets, as well as correlations among multiple phenotypes. Further, we extend our new 

method to its non-parametric version, referred as NLCT, to test potential non-linear associations 

between gene sets and multiple phenotypes, especially recommended for relatively larger 

microarray studies. Simulation studies and a real microarray example demonstrate the practical 

aspects of the proposed LCT and NLCT methods for multiple continuous phenotypes. 

Availability: Free R-codes to perform LCT for binary and multiple continuous phenotypes are 

available at http://www.ualberta.ca/~yyasui/homepage.html.   
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1. INTRODUCTION 

Analyzing microarray data at an individual gene level usually leads to a large list of significant 

genes, even after multiple comparison adjustments have been made. The process of trying to 

interpret such a large list of genes is difficult. Molecular biologists have put together lists of 

genes grouped by function, such as biological pathways, or sets of genes. Various pathways and 

gene sets databases have been compiled, for example, Kyoto Encyclopedia of Genes and 

Genomes (KEGG) [1,2], Gene Ontology [3], Biocarta [4] and Molecular Signature Data Base 

[5]. There has been a shift in focus from gene level analysis to pathway level, or gene set level, 

with many Gene Set Analysis (GSA) methods being proposed in the past decade. The most 

popular one is Gene Set Enrichment Analysis (GSEA) [6]. Extensive reviews and 

methodological discussions were given by Goeman and Buhlmann [7] and Nam and Kim [8].  

 

While GSA methods on a single binary or categorical phenotype abounds, little attention has 

been paid to the case of a continuous phenotype, and there are no methods to accommodate 

multiple and correlated continuous phenotypes. Such correlated continuous variables are 

measured routinely and many important clinic-pathological observations such as lung functions, 

tumor size or measurements of marker proteins are continuous. A naïve approach to analyzing 

such data with existing GSA methods would be to categorize the continuous phenotypes into two 

or more discrete classes, as well as analyze the multiple correlated phenotypes univariately, i.e., 

one at a time.  Such artificial categorization and univariate analyses may lead to less efficiency in 

gene-set analysis and even cause inaccurate identification of significant gene sets, especially if 

the multiple phenotypes exhibit moderate to large correlations. 
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There is an important methodological distinction between the competitive and self-contained 

GSA approaches [6, 7]. For a binary phenotype, e.g., competitive methods use gene permutation 

to test whether or not the association of the phenotype with a gene set is similar to its association 

with the other gene sets (the “Q1 hypothesis”), while self-contained methods employ sample 

permutation to test the equality of the two mean vectors of gene-set expressions which 

correspond to the two phenotype groups (the “Q2 hypothesis”). Here, we focused on the self-

contained methods because, unlike the gene permutation approaches, sample permutation 

preserves correlations within gene sets -- a property that we have used to design the proposed 

method for continuous phenotypes. 

 

Although correlations among gene expression measurements of biological pathways or 

functionally related gene sets have long been observed, to the best of our knowledge, only the 

modified Hotelling‟s T
2
 test for categorical phenotype [9] and the Linear Combination Test 

(LCT) for binary phenotype [10], and for continuous phenotype [11] have used a covariance 

matrix estimator of gene expressions to compute the enrichment test statistic. It has been realized 

that incorporation of correlations among gene expressions in a GSA approach can significantly 

improve efficiency of the analysis [9]; however, it could also bring heavy computational burden 

as well. The Linear Combination Test was designed to incorporate correlations among gene 

expressions while overcome the computational burden. In the case of binary phenotype, it has 

been showed that LCT was much more computationally efficient than the modified Hotelling‟s 

T
2
 test and approximated its superior power very well [10]; in the case of continuous phenotype, 

it has been showed that LCT was superior to other GSA methods under compare [11].  
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We propose here an extension of LCT to multiple continuous phenotypes, incorporating 

correlations among gene expressions of functionally related gene sets, as well as correlations 

among multiple phenotypes. Further, we extend our new method to its non-parametric version, 

referred as NLCT, to test potential non-linear associations between gene sets and multiple 

phenotypes, especially recommended for relatively larger microarray studies. The rest of the 

article is organized as follows. In section 2 we give detailed derivations of the two proposed 

methods. In section 3, we used simulation studies to compare performances of these two methods 

using variety of designs on different sample size, gene set size and settings on correlation among 

genes and correlation among phenotypes. Section 4 presents the performances of the proposed 

GSA methods using real microarray gene expression data from prostate tumor samples of 

African-American prostate cancer patients [13].  

 

2. METHODS   

2.1 Linear Combination Test for Multiple Continuous Phenotypes  

Consider data from a microarray study measuring p gene expressions on a total of n subjects, a 

predefined gene set 1( , , )T

pX x x  and multiple continuous phenotypes consisting of q  

outcome variables 1( , , )T

qY y y . Suppose columns in both X  and Y are centered and scaled 

across the subjects. We are interested in testing whether there is a significant relationship 

between the gene set X  and the multiple phenotypes Y . The null hypothesis to be tested is that 

expressions of the genes in the predefined gene set X are not associated with the phenotypes Y . 

One way of expressing this multivariate hypothesis linearly and univariately as a null hypothesis 

is: 
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H0: There is no association between any of the linear combinations of 1, , px x and any 

of the linear combinations of 1, , qy y .  

To address the linear relationship test, let 1 1( , ) p pZ X A a x a x    be a linear combination of 

1, , px x , and 1 1( , ) q qZ Y B b y b y    a linear combination of 1, , qy y , where pA R and 

qB R  represent the coefficient vectors of 
ia 's and jb 's, respectively. For given coefficient 

vectors A  and B of the combination coefficients, we can focus on testing whether the 

combination ( , )Z X A  is associated with the combination ( , )Z Y B . This is a classical correlation 

test and a commonly used test statistic is based on measuring the Pearson correlation between 

( , )Z X A  and ( , )Z Y B , i.e. ( ( , ), ( , ))Z X A Z Y B  . If both X  and Y  are normally distributed, 

then the variable 
2

2

1

n
t 







 follows a Student's t-distribution with degrees of freedom 2n

under the null hypothesis [19]. This also holds approximately if the observed values are non-

normal, provided sample size n  is large enough [20]. 

 

For testing the null hypothesis, we consider the linear combinations of 1, , px x  and 1, , qy y , 

exhibiting the highest correlation, i.e. choosing coefficient vectors A  and B  to maximize the 

Pearson correlation between ( , )Z X A  and ( , )Z Y B . This leads to the proposed multiple version 

of the linear combination test (LCT) for testing the null hypothesis: 

                                               (1) 

Here, we built upon the LCT method derivations for binary and continuous phenotype [10, 11], 

both of which are special cases of the multiple version of LCT. 
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Let cov( , )XX X X   be the covariance matrix of X  whose ( , )i j  entry is cov( , )ij i jx x  ; and 

similarly, let cov( , )YY Y Y  and cov( , )XY X Y  be the covariance matrix of Y  and the 

covariance matrix between X andY . The above statistic can be written as 

                                                   (2) 

When the dimension of X  and/or dimension of Y  are high, singularity of 
XX  and 

YY  have to 

be taken care of very carefully, especially when the size of the gene set is larger than the sample 

size, i.e., p n . A possible remedy for the singularity problem is to employ the shrinkage 

technique proposed by Schafer and Strimmer [12], and replace XX  and YY with their shrinkage 

versions, namely, *

XX  and *

YY . More specifically, the ( , )i j  entry of the shrinkage covariance 

matrix *

XX  is given by *

ij ij ii jj    , with shrinkage coefficients 1ij  , if i j , and 

*min(1,max(0,1 ))ij ij    , if i j , where ij  is the sample correlation between ix  and jx , 

and the optimal shrinkage intensity can be estimated by 
* 2var( ) /ij ij

i j i j

  
 

  . Based on this 

shrinkage strategy, we get the shrinkage version of the test statistic 

                                                    (3) 

The computational cost of calculating (3) has to be taken into consideration, since the right hand 

side is a nonlinear programming problem involving p q parameters. The computational price 

for incorporating the shrinkage covariance matrices into the test statistic and maximizing directly 

the right hand side of (3) can be very high, especially when permutation is used for calculating p-

value of the test. To address the computational efficiency problem, we adopt a strategy of using 

two groups of normalized orthogonal bases, instead of using the original observation vectors of 
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X and Y . We perform eigenvalue decompositions for the two shrinkage covariance matrices, 

* T

XX XUD U   and * T

YY YVD V  , and obtain two groups of orthogonal basis vectors,

1/2

1 1 1( , , ) ( , , )
Xp p pX x x x x x x UD     and 1 1 1( , , ) ( , , )q q qY y y y y y y     

1/2

Y
VD

. The 

test statistic in (3) can further be rewritten as 

                                                    (4) 

Where 1/2 T

XD U A  , 1/2 T

YD V B    and 
XY

  is the covariance matrix between X  and Y , with 

its ( , )i j  entry being cov( , )i jx y . 

 

The optimization problem in (4) can be solved in two steps. Firstly, for a given  , find the 

optimal , which is proportional to
XY
 ; secondly, substitute the optimal   into (4), and find 

the global optimal  , which is proportional to the first eigenvector of the matrix 
XY XY

T   

corresponding to the largest eigenvalue. We note that the value of 2*T  equals to the largest 

eigenvalue of
XY XY

T  . 

 

The computation advantage is obvious when permutations are used to calculate p-value of the 

test, mainly because eigenvalue decompositions of the two shrinkage covariance matrices are not 

needed for the permuted versions of the data, but only for the original data.  

 

2.2 Nonlinear Combination Test for Multiple Continuous Phenotypes  

The proposed LCT method assumes a linear relationship between the genes in a gene set and the 

phenotypes. So do almost all the self-contained GSA approaches that have been proposed in the 
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literature. The reason for us to focus on testing linear relationship is mainly for simplicity of the 

method. When we have access to limited data points, a simpler approach is more reliable than a 

complex/flexible one. If a larger sample size is available or if there is evidence that the 

relationships between gene sets and phenotypes could be non-linear/non-monotone, we may 

consider relaxing the linearity assumption, and testing more general null hypnoses, i.e., H0: there 

is no relationship between genes in the gene set and the phenotypes.  

 

The linear combination test proposed can be easily adapted to test both linear and nonlinear 

relationships between genes in a gene set and phenotypes, by using nonparametric techniques. 

The main idea here is to apply a non-linear transformation to the vector of genes X  , then use 

linear test methods to check if there is a significant linear relationship between the non-linear 

transformation of X and the phenotypes Y. This strategy is similar to that of „basis expansion‟ 

which is widely adopted in regression/discrimination analyses [21]. Some widely used non-linear 

transformations are polynomial transformations of single or multiple genes to achieve higher-

order Taylor expansions; cubic splines or wavelets transformations of single genes. We note that 

the same transformation strategy can be applied to the phenotypes Y. We prefer to leave Y 

untransformed and keep the method not too high in flexibility, which requires larger sample size 

as well as higher computational cost. 
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3. SIMULATION STUDY 

Our simulation study is designed to check performance of both LCT and NLCT methods. More 

specifically, we focus on type I error and power of the proposed tests, by varying gene-set size, 

sample size, and magnitude of correlations among genes. 

 

We describe below our simulation study design. For each gene-set of size p , a gene expression 

matrix n pX  was generated from a multivariate normal distribution. The correlation between 

each pair of genes was set at  , with values of 0.0, 0.3, 0.6, or 0.9. For each gene set, a group of 

continuous phenotypes of size q were generated from the following multivariate linear model, 

 Y X  ,                                                             (5) 

where p q  is a coefficient matrix, and n q  the error matrix generated from a multivariate 

normal distribution. The correlation between each pair of errors was set at  . In the null model, 

used to check the size of the test, we set all entries of   to 0, so that columns in X are not 

correlated with columns in  Y . In the alternative model, used to check the power of the test, we 

randomly selected five rows and three columns of the coefficient matrix, and set the 

corresponding fifteen entries to a common value  , ranging from 0 to 5, with an increment of 

0.25. The rest of the entries in the coefficient matrix were set at 0. We note that the five selected 

columns of X  are correlated with the three selected columns of  Y , and that the correlation 

increases with  . We used various sample sizes and gene-set sizes, including large p, and small 

n, a scenario common to gene-set analysis. The simulation data were replicated 1,000 times in 

each model. The p-values were based on 1,000 permutations.  
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The type I errors are similar across the LCT and NLCT methods (Table 1), with those of LCT 

closer to nominal level of 0.05, indicating lower sample size could lead to relatively higher type I 

errors of NLCT compare to LCT. As the sample size increases (n = 50) the type I error becomes 

closer to the nominal level 0.05, as expected from their use of permutation of phenotype labels.  

 

Figure 1 illustrates the empirical power of both the LCT and NLCT methods using the nominal 

level of 0.05. The top left panel (n=20, p=20, q=10) shows power change of LCT with 

correlation among genes. At low correlation values, LCT appears to be conservative and less 

powerful, which may be explained by the fact that LCT is a test based on linear combination 

using shrinkage approach. Intuitively, higher magnitudes of correlations between genes imply 

lower level of variability of the linear combination of those genes. Similar phenomenon can be 

found for NLCT method on the bottom left panel (n=50, p=50, q=10). The top right panel (n=50, 

q=10 and  =0.6) shows power change of LCT with size of gene set.  It implies that, with large 

gene sets, the efficiency of LCT test drops down significantly, i.e. larger sample size is required 

to test large gene sets. The bottom right panel (p=50, q=10 and  =0.3) shows the power change 

of NLCT with sample size, indicating low sample size could lead to very low power of test. Also 

comparing the two red lines in the bottom panels, we can see that NLCT is obviously less 

efficient than LCT when testing the linear association between genes and phenotypes. 
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4. APPLICATION 

Leptin is a 16-kDa protein hormone that plays a key role in regulating energy intake and 

expenditure, including appetite and hunger, metabolism and behavior. It is one of the most 

important adipose-derived hormones [25]. Adiponectin (also refer to as GBP-28, apMI, AdipoQ 

and Acrp30) is a protein which in humans is encoded by ADIPOQ gene [26]. It is involved in 

regulating glucose level and fatty acid oxidation. Both leptin and adiponectin are well-known 

markers of human adiposity and obesity. These are hormones associated with various metabolic 

and inflammatory conditions. Interestingly, while leptin is found to be over-expressed in obese 

subjects, adiponectin is generally under-expressed, not just in adipose but also in other tissues. 

As the role of adipokines in prostate cancer is an important issue, we therefore considered using 

the continuous transcript levels of these dual markers, leptin and adiponectin, together as a multi-

phenotype for application of LCT for geneset enrichment analysis of prostate cancer gene 

expression data. 

 

We applied LCT to analyze a real Affymetrix microarray dataset consisting of genome-wide 

transcriptomic measurements of prostate tumor samples from African-American prostate cancer 

patients [13] against the continuous phenotype of the human leptin gene (LEP) and adiponection 

gene (ADIPOQ) transcript expression levels. The publicly available data were downloaded from 

Gene Expression Omnibus [22] [GEO: GSE6956]. The data that we used in the present study are 

part of a larger microarray study into immunobiological differences in prostate cancer tumors 

between African-American and European-American men. Because the LEP and ADIPOQ 

expression levels may be different between the two groups, we used only the data from the 
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African-American group to test the LCT methods. For our analysis, we used the expression 

values of 13,233 genes measured in tumor samples from 33 patients. The tumor samples were 

resected adenocarcinomas from patients who had not received any therapy before prostatectomy 

and were obtained from the National Cancer Institute Cooperative Prostate Cancer Tissue 

Resource (CPCTR) and the Department of Pathology at the University of Maryland. According 

to Wallace et al. [13], the macrodissected CPCTR tumor specimens were reviewed by a CPCTR-

associated pathologist who confirmed the presence of tumors in the specimens. The tissues were 

collected between 2002 and 2004 at four different sites. The median age of prostatectomy was 61 

and the median prostate-specific antigen (PSA) at diagnosis was 6.1 ng/mL. Fifty-five percent of 

the tumors were stage pT2, and 45% were stage pT3 or more. Detailed RNA extraction, labeling 

and hybridization protocols were as described previously [13].  

 

For comprehensive gene-set analysis, the C2 catalog from MsigDB [8] consisting of 1,892 gene 

sets were used, including metabolic and signaling pathways from major pathway databases, gene 

signatures from biomedical literature including 340 PubMed articles, as well as other gene sets 

compiled from published mammalian microarray studies. Following Subramanian et. al. 2005 

[8], 1,403 gene sets with size between 15 and 500 were used in our analysis. Each gene set was 

tested, using both LCT and NLCT approach, for its association with the LEP and ADIPOQ 

expression measurements.  

 

We run firstly the univariate versions of LCT and NLCT for each of LEP and ADIPOQ 

expressions, followed by the multiple versions of LCT and NLCT using (LEP, ADIPOQ) 

expressions as a multiple phenotype. Table 2 shows percentages of gene sets with p-values less 
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than 0.005, 0.01, 0.05, and 0.10.  We expect LCT to be more suitable than NLCT for small to 

moderate sample sizes. Indeed, for our application, LCT is more efficient than NLCT. For large 

sample size and when non-linear relationship does exist, we expect NLCT to be more efficient. 

A larger percent of sets are associated with LEP than ADIPOQ. For some of the sets, the 

association with LEP is diluted by ADIPOQ in the multiple phenotypes analysis. However, 33 

sets show a p-value smaller than 0.05 in the multiple phenotypes (LEP, ADIPOQ) analysis, 

although their univariate analysis indicated a p-value larger than 0.05 for each of LEP and 

ADIPOQ phenotype (Table 3).   

 

5. DISCUSSION 

We focused here on self-contained GSA methods. We note that competitive and self-contained 

methods test different hypotheses, and therefore it is important for the user to make an informed 

choice based on the hypothesis of interest and their understanding of the limitations of the two 

approaches (see reviews by Nam and Kim [7] and Dinu et. al. [24]). An important limitation of 

the self-contained approaches is that only a few genes can drive the association between the gene 

set and the phenotype. In such cases, post-hoc analysis can be used to reduce the gene set to a 

core sub-set associated with the phenotype. Such an analysis has been reported in simulations 

and in a real example for a binary phenotype [24].  

 

Our proposed method is useful for testing associations between sets of genes or pathways and 

multiple and correlated continuous phenotypes. These are often measured in molecular 

epidemiology studies, and include clinico-pathological measurements such a tissue features, for 

example, tumor size, staining based readouts; cellular characteristics such as the amount of 
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lymphocytic infiltration in a tumor environment; and subject-specific measurements such as 

diagnostic or prognostic marker protein or metabolite concentrations. The LCT algorithm can 

adjust for continuous or categorical covariates following a regression framework. The LEP and 

ADIPOQ levels in the prostate tumor example that we considered may also have been influenced 

by patient-specific covariates such as body mass index (BMI), age, and/or smoking status. We 

note that smoking status did not show a significant association with LEP expression levels (p-

value = 0.36), or ADIPOQ expressions levels (p-value = 0.52) in our data, and BMI and age data 

were not available for our analysis.  

 

The LCT approach can be used for both univariate and multivariate analyses. From the real data 

analysis, we can see that the univariate LCT for LEP is more sensitive/powerful comparing to the 

multiple LCT. Generally speaking, if we knew previously that more likely a subset of the group 

of phenotypes is associated with the gene sets than the rest of phenotypes, then focusing on the 

subset of the phenotypes will gain higher power for the test, for further information is 

incorporated in the testing. Here, we want to point out that naively (univariately) analyzing a 

group of multiple correlated phenotypes will lead to problems. In the real data analysis, for 

controlling type I error (e.g. ≤0.05), it is hard to set a threshold for the two univariate tests, 

because of correlations between LEP and ADIPOQ. If we can assume that the two phenotypes 

are independent, we can set a common threshold (roughly as 0.02532057) for them. We then get 

209 (11.32%) significant gene sets tested by the naïve approach, but not including 67 (3.63%) of 

the 159 (8.61%) significant gene sets tested by the multiple LCT. This indicates that naïve 

approach can identify only gene sets associated with one of the two multiple phenotypes, instead 

of their combination. 
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LCT methods rely on the linearity assumption. To check the linearity assumption, exploratory 

data analysis should be used prior to running a formal inference. However, a small sample size 

which is common in microarray studies, would limit a thorough check for non-linearities. NLCT 

can be used for relatively larger sample sizes, or in the case the linear assumption does not hold. 

Our simulations and analyses of real microarray studies indicated LCT methods perform very 

well for small sample sizes. The question of how small is small is debatable and depends largely 

on the study design. In the case of a binary/categorical phenotype, at least five samples per group 

are desirable. In the case of a continuous phenotype, assessing significance based on less than 10 

samples is dangerous; an alternative would be to rely upon representations that are more 

descriptive/exploratory in nature. In terms of computation, both LCT and NLCT are highly 

efficient compared to other GSA methods, especially given the incorporation of the covariance 

matrix into the estimations. A limitation of our study is that the findings come from a relatively 

small observational study and therefore cannot be generalized to other populations. 
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Figure 1. Power changes of the two GSA methods: LCT and NLCT.  
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Table 1. Type I errors of the multiple phenotype GSA methods LCT and NLCT, with dimension 

of the multiple phenotype set at q=10. 

 

 

 

Method 

 

ρ 

 

n=20 

 

n=50 

   

p=20 

 

p=50 

 

p=100 

 

p=20 

 

p=50 

 

p=100 

 

LCT 

 

0.0 

 

0.050 

 

0.047 

 

0.047 

 

0.052 

 

0.043 

 

0.047 

  

0.3 

 

0.051 

 

0.053 

 

0.050 

 

0.055 

 

0.045 

 

0.043 

  

0.6 

 

0.050 

 

0.054 

 

0.042 

 

0.051 

 

0.042 

 

0.048 

  

0.9 

 

0.053 

 

0.052 

 

0.044 

 

0.058 

 

0.050 

 

0.046 

 

 

NLCT 

 

0.0 

 

0.041 

 

0.039 

 

0.035 

 

0.062 

 

0.049 

 

0.058 

  

0.3 

 

0.042 

 

0.047 

 

0.051 

 

0.061 

 

0.052 

 

0.043 

  

0.6 

 

0.044 

 

0.062 

 

0.047 

 

0.052 

 

0.049 

 

0.042 

  

0.9 

 

0.050 

 

0.060 

 

0.049 

 

0.044 

 

0.053 

 

0.051 

 

 

 

 

Table 2. Percentages of gene sets with p-values less than 0.005, 0.01, 0.05 and 0.10: univariate 

LEP and ADIPOQ LCT, and multiple phenotypes (LEP, ADIPOQ) LCT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method 

 

P-value 

 

 ≤.005 ≤.01 ≤.05 ≤.10 

 

LCT for LEP 2.8 4.5 19.9 36.1 

LCT for ADIPOQ 0.4 0.9 3.1 6.3 

LCT for (LEP, ADIPOQ) 0.9 1.5 8.6 18.6 

 

NLCT for LEP 0.6 1.4 7.6 16.0 

NLCT for ADIPOQ 0.3 0.7 3.8 10.1 

NLCT for (LEP, ADIPOQ) 0.3 0.8 5.1 11.0 
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Table 3. Gene sets with multiple phenotypes (LEP, ADIPOQ) LCT p-values less than 0.05, 

although univariate LEP and ADIPOQ LCT p-values are larger than 0.05.  

 

Gene-set name Gene-set  

size 

LEP 

 p-value 

ADIPOQ  

p-value 

(ADIPOQ, LEP)  

p-value 
 
YEN_MYC_WT 8 0.061 0.199 0.034 

GLUCONEOGENESIS 50 0.195 0.192 0.036 

BYSTRYKH_HSC_BRAIN_TRANS_GLOCUS 144 0.118 0.157 0.047 

PENG_LEUCINE_DN 135 0.186 0.189 0.035 

AMINOSUGARS_METABOLISM 14 0.223 0.341 0.039 

PENTOSE_PHOSPHATE_PATHWAY 21 0.192 0.098 0.044 

ZELLER_MYC_UP 22 0.09 0.262 0.032 

 

POMEROY_DESMOPLASIC_VS_CLASSIC_MD_DN 38 0.093 0.079 0.011 

FBW7PATHWAY 8 0.088 0.314 0.048 

GSK3PATHWAY 24 0.18 0.225 0.028 

GOLDRATH_CELLCYCLE 31 0.21 0.105 0.048 

STREPTOMYCIN_BIOSYNTHESIS 8 0.094 0.072 0.013 

FRUCTOSE_AND_MANNOSE_METABOLISM 24 0.168 0.061 0.007 

GLYCOLYSISPATHWAY 8 0.137 0.076 0.013 

UBIQUINONE_BIOSYNTHESIS 12 0.086 0.051 0.013 
 

HOFMANN_MANTEL_LYMPHOMA_VS_LYMPH_NODES_UP 45 0.053 0.135 0.022 

HOGERKORP_CD44_DN 22 0.057 0.504 0.05 

 
CROMER_HYPOPHARYNGEAL_MET_VS_NON_DN 72 0.11 0.178 0.05 

RUTELLA_HEPATGFSNDCS_UP 144 0.058 0.136 0.045 

METHOTREXATE_PROBCELL_DN 11 0.102 0.132 0.033 

GENOTOXINS_4HRS_DISCR 33 0.194 0.121 0.03 

HTERT_UP 57 0.083 0.089 0.036 

METHOTREXATE_PROBCELL_UP 14 0.147 0.111 0.046 

CAMPTOTHECIN_PROBCELL_UP 17 0.085 0.159 0.038 

UV_UNIQUE_FIBRO_UP 20 0.058 0.343 0.014 

CITED1_KO_HET_DN 29 0.097 0.157 0.012 

HEATSHOCK_YOUNG_UP 11 0.113 0.268 0.042 

 

HSA00051_FRUCTOSE_AND_MANNOSE_METABOLISM 35 0.148 0.075 0.044 

HSA00052_GALACTOSE_METABOLISM 27 0.053 0.277 0.044 

HSA00521_STREPTOMYCIN_BIOSYNTHESIS 10 0.099 0.124 0.026 
 

HSA01030_GLYCAN_STRUCTURES_BIOSYNTHESIS_1 83 0.106 0.25 0.049 

 
HSA04080_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 218 0.103 0.116 0.044 

 

HSA04120_UBIQUITIN_MEDIATED_PROTEOLYSIS 34 0.124 0.082 0.041 

      

 


