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MAXIMAL INEQUALITIES FOR FRACTIONAL BROWNIAN

MOTION: AN OVERVIEW

B.L.S. Prakasa Rao

CR Rao Adavnced Institute of Mathematics, Statistics and Computer Science

Hyderabad 500046, India

Abstract: We give an overview of some maximal inequalities and limit theorems for the tail

probabilities for the supremum of a fractional Brownian motion.

1 Introduction

Fractional Brownian motion plays an important role in modelling long range dependence

in time series analysis. Developing methods of statistical inference for fractional diffusion

processes, that is, for processes driven by a fractional Brownian motion (fBm) is of impor-

tance and interest. Even though there is a vast amount of literature dealing with Gaussian

processes, including an excellent survey in Li and Shao (2001), we have decided to prepare

an overview of the results, especially for the case of fractional Brownian motion, for the

use of developers of statistical methods in their study of long range dependence. Maximal

inequalities and limit theorems for fBm plays an important role in such developments. For a

recent survey on mthods of statistical inference for fractional diffusion processes, see Prakasa

Rao (2010).

Let BH ≡ {BH
t ,−∞ < t < ∞} be the standard fractional Brownian motion (fBm) with

Hurst index H ∈ (0, 1), that is, a centered Gaussian process with BH
0 = 0 and

Cov(BH
s , B

H
t ) =

1

2
(|t|2H + |s|2H − |t− s|2H),−∞ < s, t <∞.

It is known that the fBm BH is self-similar, that is, for any c > 0,

{BH
ct ,−∞ < t <∞} ∆

= {cHBH
t ,−∞ < t <∞}

in the sense that the processes specified on both sides have the same finite dimensional

distributions and it has stationary Gaussian increments. For a short survey of properties of

the fBm, see Prakasa Rao (2010).

The following result is due to Ruzmaikina (2000). Let H ∈ (12 , 1) and 0 < β < 2H − 1.
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Let a function f(.) ≥ 0 and suppose that f() ∈ L
2

1+β ([0, 1]). Define

qf (s, t) = H(2H − 1)

∫ t

s

∫ t

s
f(u)f(v)|u− v|2H−2 dudv.(1. 1)

Theorem 1.1: (Ruzmaikina (2000)) Let H ∈ (12 , 1) and 0 < β < 2H−1. Let f be a function

such that f(.) ≥ 0 and f(.) ∈ L
2

1+β ([0, 1]). Then there exists a Gaussian Markov process

{Y (t), t ≥ 0} with independent increments and continuous paths such that E[Y (t)] = 0, t ≥ 0

and

E[Y (s)Y (t)] = qf (0, s) = H(2H − 1)

∫ s

0

∫ s

0
f(u)f(v)|u− v|2H−2 dudv, 0 ≤ s ≤ t.

Proof: Note that the function qf (0, s) is non-decreasing in s since the function f is non-

negative. Furthermore it is nonnegative definite. This can be seen by the following arguments.

Let 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn and c1, . . . , cn ∈ R. Then
n∑

i=1

n∑
j=1

cicjqf (0, si) =
n∑

i=1

c2i qf (0, si) +
n∑

i=1

(2
∑
i<j

cicj)qf (0, si)

=
n∑

i=1

[c2i + 2
∑
i<j

cicj ]qf (0, si)

=
n∑

i=1

[(ci + . . .+ cn)
2 − (ci+1 + . . .+ cn)

2]qf (0, si)

= (c1 + . . .+ cn)
2qf (0, s1) +

n∑
i=2

(ci + . . .+ cn)
2[qf (0, si+1)− qf (0, si))

≥ 0.

Hence one can construct a mean zero Gaussian process with covariance function E[Y (s)Y (t)] =

qf (0, s), 0 ≤ s ≤ t ≤ 1. Note that, for 0 ≤ s1 < t1 ≤ s2 < t2,

E[(Y (t1)− Y (s1))(Y (t2)− Y (s2))]

= E[Y (t1)Y (t2)]− E[Y (t1)Y (s2)]

−E[Y (s1)Y (t2)] + E[Y (s1)Y (s2)]

= qf (0, t1)− qf (0, t1)− qf (0, s1) + qf (0, s1)

= 0.

Hence the Gaussian process {Y (t), t ≥ 0} has uncorrelated increments. Since the increments

of the process {Y (t), t ≥ 0} are Gaussian and they are uncorrelated, they have to be inde-

pendent. This shows that the process {Y (t), t ≥ 0} is a mean zero Gaussian Markov process

with independent increments.♢.
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The proof given above is due to Ruzmaikina (2000). We included it here for completeness.

The process {Y (t), t ≥ 0} described above can be represented as the deterministic time

change of the standard Brownian motion {W (t), t ≥ 0}; in fact the process {Y (t), t ≥ 0}
and the process {W (qf (0, t)), t ≥ 0} have the same probability structure. In particular, the

process {Y (t), t ≥ 0} has continuous sample paths with probability one and it obeys the

reflection principle in the sense that

P ( sup
0≤t≤T

Y (t) ≥ λ) = 2 P (Y (T ) ≥ λ)(1. 2)

for every λ > 0 and T > 0. Hence

P ( sup
0≤t≤T

Y (t) ≥ λ) =

∫
λ/
√

qf (0,T )

√
2

π
e−x2/2dx.(1. 3)

The following result is due to Slepian (1962) and is known as the Slepian’s lemma (cf.

Kahane (1986) ; Leadbetter et al. (1983); Adler (1990)).

Theorem 1.2: (Slepian’s Lemma) Let the processes X1 = {X1(t), t ≥ 0} and X2 =

{X2(t), t ≥ 0} be centered Gaussian processes with E[X2
1 (t)] = E[X2

2 (t)] = 1. Let ρ1(t, s)

and ρ2(t, s) be the covariance functions of the processes X1 and X2 respectively. Suppose

that, for some δ > 0,

ρ1(t, s) ≥ ρ2(t, s), 0 ≤ t, s ≤ δ.

Then

P ( sup
0≤t≤T

X1(t) ≤ u) ≥ P ( sup
0≤t≤T

X2(t) ≤ u), u ∈ R

for any 0 ≤ T ≤ δ.

Note that the function qf (0, t) = t2H for the function f ≡ 1. Theorem 1.1 implies that

there exists a centered Gaussian Markov process B̂H = {B̂H
t , 0 ≤ t ≤ T} with independent

increments such that

Cov(B̂H
s , B̂

H
t ) = s2H , 0 ≤ s ≤ t ≤ T.

Furthermore the ”reflection principle” holds for the process B̂H in the sense that, for all

u > 0, and T > 0,

P ( sup
0≤t≤T

B̂H
t ≥ u) = 2 P (B̂H

T ≥ u).
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Note that, for any u > 0, by the Slepian’s lemma,

P ( sup
0≤t≤T

BH
t ≥ u) ≤ P ( sup

0≤t≤T
B̂H

t ≥ u)

and hence, for any u > 0,

P ( sup
0≤t≤T

BH
t ≥ u) ≤ 2 P (B̂H

T ≥ u).(1. 4)

Observe that the random variable B̂H
T has the Gaussian distribution with mean zero and

variance T 2H . Therefore

P (B̂H
T ≥ u) = P (Z ≥ uT−H)

where Z is a standard Gaussian random variable. It is known that

P (Z ≥ u) ≤ 1

2
e−u2/2,

and

P (Z ≥ u) ≤ 1√
2πu

e−u2/2

for any u > 0 (cf. Ito and Mckean (1965), p.17; Kutoyants (1994), p.27). Applying these

inequalities, we can get the following maximal inequality for the fBm BH with Hurst index

H ∈ (12 , 1).

Theorem 1.3: Suppose the process BH is a centered fractional Brownian motion with Hurst

index H ∈ (12 , 1). Then, for any u > 0,

P ( sup
0≤t≤T

BH
t ≥ u) ≤ 2min{1

2
e−T−2Hu2/2,

1√
2πuT−H

e−u2T−2H/2}.

From the symmetry property of the fBm, it follows that

P ( sup
0≤t≤T

BH
t ≥ u) = P (− sup

0≤t≤T
BH

t ≤ −u)

= P ( inf
0≤t≤T

(−BH
t ) ≤ −u)

= P ( inf
0≤t≤T

BH
t ≤ −u).

Hence, for any u > 0,

P ( sup
0≤t≤T

|BH
t | ≥ u) ≤ P ( sup

0≤t≤T
BH

t ≥ u)
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+P ( inf
0≤t≤T

BH
t ≤ −u)

= 2 P ( sup
0≤t≤T

BH
t ≥ u)

≤ 2 P ( sup
0≤t≤T

B̂H
t ≥ u)

= 4P (B̂H
T ≥ u),

and we have the following result.

Theorem 1.4: Suppose the process BH is the centered fractional Brownian motion with

Hurst index H ∈ (12 , 1). Then, for any u > 0,

P ( sup
0≤t≤T

|BH
t | ≥ u) ≤ 4min{1

2
e−T−2Hu2/2,

1√
2πuT−H

e−u2T−2H/2}.

Note that BH
0 = 0 a.s. and the fBm BH is self-similar with stationary increments. Hence

sup
s≤t≤s+r

|BH
t −BH

s | ∆
= sup

0≤t≤r
|BH

t −BH
0 |

a.s.
= sup

0≤t≤r
|BH

t |

∆
= rH sup

0≤t≤1
|BH

t |

Hence, for any u > 0,

P ( sup
s≤t≤s+r

|BH
t −BH

s | ≥ u) = P ( sup
0≤t≤1

|BH
t | ≥ ur−H)

≤ 2 P ( sup
0≤t≤1

B̂H
t ≥ ur−H) ≤ 4 P (B̂H

1 ≥ ur−H).

Following the arguments used above, Muneya and Shieh (2009) obtained the following max-

imal inequalities for the fBm {BH
t , t ≥ 0} with BH

0 = 0.

Theorem 1.5: Let H ∈ [12 , 1). Then, for any u > 0,

P ( sup
t≤s≤t+1

BH
s ≥ u) ≤

√
2

π

∫ ∞

u
e−x2/2dx(1. 5)
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and

P ( sup
t≤s≤t+1

|BH
s | ≥ u) ≤ 2

√
2

π

∫ ∞

u
e−x2/2dx.(1. 6)

Remarks : Let the process {W (t), t ≥ 0} be the standard Brownian motion. Without

taking recourse to Theorem 1.1, one can still obtain the inequalities, stated in Theorems

1.2 to Theorem 1.5, by observing that the scaled Brownian motion {Z(t) = W (t2H), t ≥ 0}
satisfies the conditions in the Slepian’s lemma for H ∈ (12 , 1), and the process Z obeys the

reflection principle.

Ruzmaikina (2000) obtained the following inequality for a stochastic integral with respect

to a fBm.

Theorem 1.6: (Ruzmaikina (2000)) Let H ∈ (12 , 1) and 0 < β < 2H − 1. Suppose the

function f(.) ∈ L2/(1+β)([0, 1]). Define

qf (s, t) = H(2H − 1)

∫ t

s

∫ t

s
f(u)f(v)|u− v|2H−2dudv.

Then, for any λ > 0,

P ( sup
0≤t≤1

∫ t

0
f(s)dBH

s ≥ λ) ≤
∫
λr/

√
qf+ (0,1)

√
2

π
e−x2/2dx(1. 7)

+

∫
λ(1−r)/

√
qf− (0,1)

√
2

π
e−x2/2dx

where f+ = |f |+f
2 and f− = |f |−f

2 .

Proof : This result is again a consequence of the Slepian’s lemma and the Theorem 1.1. The

following proof is due to Ruzmaikina (2000). We give the proof here for completeness. Let

X(t) =

∫ t

0
f(s)dBH

s .

Then the process {X(t), 0 ≤ t ≤ 1} is a centered Gaussian process with

E[X(t)X(s)] = qf (s, t), 0 ≤ t, s ≤ 1.
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Define the process {Y (t), 0 ≤ t ≤ 1} to be a centered Gaussian process with

E[Y (t)Y (s)] = qf (0, s), 0 ≤ s ≤ t ≤ 1.

Existence of such a process was proved in the Theorem 1.1. It is clear that E([X(t)]2) =

E([Y (t)]2). Let us first assume that the function f ≥ 0. Then E[X(s)X(t)] ≥ E[Y (s)Y (t)]

for 0 ≤ s, t ≤ 1. Hence the processes {X(t), 0 ≤ t ≤ 1} and {Y (t), 0 ≤ t ≤ 1} satisfy the

conditions in the Slepian’s lemma. Furthermore the process {Y (t), 0 ≤ t ≤ 1} is a Gaussian

process with independent increments and obeys the reflection principle. Hence, for any λ > 0,

P ( sup
0≤t≤1

X(t) ≥ λ) ≤ P ( sup
0≤t≤1

Y (t) ≥ λ)

= 2 P (Y (1) ≥ λ)

=

∫
λr/

√
qf (0,1)

√
2

π
e−x2/2dx.

Therefore, for the function f(.) ≥ 0,

P ( sup
0≤t≤1

X(t) ≥ λ) ≤
∫
λr/

√
qf (0,1)

√
2

π
e−x2/2dx.(1. 8)

Suppose f(.) ∈ L2/(1+β)([0, 1]). Let

X+(t) =

∫ t

0
f+(s)dB

H
s , 0 ≤ t ≤ 1

and

X−(t) =

∫ t

0
f−(s)dB

H
s , 0 ≤ t ≤ 1.

Define the processes {Y+(t), 0 ≤ t ≤ 1} and {Y−(t), 0 ≤ t ≤ 1} by replacing the function f by

f+ and f− respectively in the process {Y (t), 0 ≤ t ≤ 1} defined earlier. Since the Slepian’s

lemma applies to the processes {X−(t), 0 ≤ t ≤ 1} and the process {Y−(t), 0 ≤ t ≤ 1}, we
get that

P ( sup
0≤t≤1

X+(t) ≥ λ) ≤
∫
λr/

√
qf+ (0,1)

√
2

π
e−x2/2dx.(1. 9)

and

P ( sup
0≤t≤1

X−(t) ≥ λ) ≤
∫
λr/

√
qf− (0,1)

√
2

π
e−x2/2dx.(1. 10)

Therefore, for any 0 ≤ r ≤ 1,

P ( sup
0≤t≤1

X(t) ≥ λ) = P ( sup
0≤t≤1

(X+(t)) + sup
0≤t≤1

(−X−(t)) ≥ λ)(1. 11)
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≤ P ( sup
0≤t≤1

X+(t) ≥ λr) + P ( sup
0≤t≤1

(−X−(t) ≥ λ(1− r))

≤
∫
λr/

√
qf+ (0,1)

√
2

π
e−x2/2dx

+

∫
λ(1−r)/

√
qf− (0,1)

√
2

π
e−x2/2dx.

2 Maximal Inequalities Leading to Upper Bounds

Novikov and Valkeila (1999) obtained some maximal inequalities for fractional Brownian

motion. They extend the Burkholder-Davis-Gundy inequalities for the fractional Brownian

motion. Let F = {Ft, t ≥ 0} be the filtration generated by the fractional Brownian motion

BH . For any process X, let X∗ be the supremum process defined by

X∗
t = sup

0≤s≤t
|Xs|.

Since the fractional Brownian motion is a self-similar process, it follows that

{BH
ct , 0 ≤ t ≤ T} ∆

= {cHBH
t , 0 ≤ t ≤ T}

and hence

B∗H
ct

∆
= cHB∗H

t

for any c > 0. The following result is an easy consequence of the self-similarity of the fractional

Brownian motion BH .

Theorem 2.1: (Novikov and Valkeila (1999)) For any T > 0 and p > 0,

E[(B∗H
T )p] = K(H, p)T pH(2. 1)

where K(H, p) = E[(B∗H
1 )p].

Novikov and Valkeila (1999) extended the above result for a fractional Brownian motion

indexed by a stopping time.

Theorem 2.2: Let τ be a stopping time with respect to the natural filtration F generated

by the fBm BH . Then, for any p > 0, and H ∈ (12 , 1), there exist positive constants c(p,H)

and C(p,H) depending only on p and H such that

c(p,H)E(τpH) ≤ E[(B∗H
τ )p] ≤ C(p,H)E(τpH)(2. 2)
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and, for any p > 0, and H ∈ (0, 12),

E[(B∗H
τ )p] ≥ c(p,H)E(τpH).(2. 3)

Muneya and Shieh (2009) obtained the following result on the moments of supremum of

the fBm BH over a bounded interval.

Theorem 2.3: (Muneya and Shieh (2009)) Let H ∈ [12 , 1). Then, for any integer m ≥ 1,

E[( sup
t≤s≤t+r

|BH
t |)m] ≤ rHm 2

√
2√
π
(m− 1)!! if m is odd(2. 4)

and

E[( sup
t≤s≤t+r

|BH
t |)m] ≤ rHm 2(m− 1)!! if m is even.(2. 5)

This result follows from the following arguments. Note that, for any non-negative random

variable X,

E(Xm) =

∫ ∞

0
mym−1P (X > y) dy.

Hence

E[( sup
t≤s≤t+r

|BH
t |)m] ≤ 2

√
2√
π

∫ ∞

0
mym−1[

∫ ∞

r−Hy
e−x2/2 dx] dy

=
2
√
2√
π

∫ ∞

0
e−x2/2[

∫ rHx

0
mym−1 dy] dx

= rHm 2
√
2√
π

∫ ∞

0
xme−x2/2 dx

The result stated in Theorem 2.3 follows from the following relations:∫ ∞

0
xme−x2/2 dx = (m− 1)!! if m is odd(2. 6)

and ∫ ∞

0
xme−x2/2 dx =

√
π

2
(m− 1)!! if m is even(2. 7)

(cf. Gradshteyn and Ryzhik (2000)). For more details, see Muneya and Shieh (2009).
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Debicki and Tomonek (2009) obtained bounds on the γ-th moment of B∗H
T for γ > 0 and

T > 0. Let

KT (H, γ) = E[(B∗H
T )γ ] = E[ sup

0≤t≤T
|BH

t |γ ].(2. 8)

From the self-similarity of the fBm, it follows that

KT (H, γ) = T γHK1(H, γ).(2. 9)

Theorem 2.4: (Debicki and Tomanek(2009)) Let γ > 0 and H ∈ (0, 1).

(i) If 0 < H < 1
2 , then

KT (H, γ) ≥ T γH 1√
π
2γ/2Γ(

γ + 1

2
)(2. 10)

and

(ii) if 1
2 ≤ H < 1, then

T γH 1√
π
2

γ
2Γ(

γ + 1

2
) ≤ KT (H, γ) ≤ T γH 1√

π
2

γ
2
+1Γ(

γ + 1

2
).(2. 11)

Theorem 2.4 is a consequence of the following result, again due to Debicki and Tomanek

(2009), for centered Gaussian processes.

Theorem 2.5: Let X(0) = 0 a.s, and X ≡ {X(t), t ≥ 0} be the centered Gaussian process

with stationary increments and continuous strictly increasing variance function V ar(X(t)) =

σ2(t).

(i) If the function σ2(t) is sub-additive on [0, T ], in the sense that

σ2(t) ≤ σ2(s) + σ2(t− s), 0 ≤ s ≤ t ≤ T,

then

E([ sup
0≤t≤T

X(t)]γ) ≥ [σ2(T )]γ/2
1√
π
2γ/2Γ(

γ + 1

2
)(2. 12)

and

(ii) if the function σ2(t) is super-additive on [0, T ], in the sense that

σ2(t) ≥ σ2(s) + σ2(t− s), 0 ≤ s ≤ t ≤ T,
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then

E([ sup
0≤t≤T

X(t)]γ) ≤ [σ2(T )]γ/2
1√
π
2γ/2Γ(

γ + 1

2
).(2. 13)

We include a modified version of the proof from Debicki and Tomanek (2009) for com-

pleteness.

Proof: (i) Suppose the function σ2(t) is concave on [0, T ]. Let {W (t), t ≥ 0} be the standard

Brownian motion. Define the stochastic process Y (t) = W (σ2(t)), t ≥ 0. Then the process

Y ≡ {Y (t), t ≥ 0} is a centered Gaussian process with

V ar(Y (t)) = V ar(W (σ2(t))) = σ2(t) = V ar(X(t)), 0 ≤ t ≤ T.

Furthermore, from the sub-additivity of the function σ2(.) on the interval [0, T ], it follows

that

V ar(Y (t)− Y (s)) = V ar(W (σ2(t))−W (σ2(s)))

= σ2(t)− σ2(s)

≤ σ2(t− s) (by the sub-additivity of the function σ2(.))

= V ar(X(t)−X(s)) (by stationary increments of processX)

for 0 ≤ s < t ≤ T. Applying the Slepian’s lemma (Theorem 1.2), it follows that

P ( sup
0≤t≤T

X(t) > x) ≥ P ( sup
0≤t≤T

Y (t) > x)

Since

P ( sup
0≤t≤T

Y (t) > x) = P ( sup
0≤t≤σ2(T )

W (t) > x),

it follows that

E([ sup
0≤t≤T

X(t)]γ) ≥ E([ sup
0≤t≤σ2(T )

W (t)]γ).

From the self-similarity of the Brownian motion, we get that

E([ sup
0≤t≤σ2(T )

W (t)]γ) = [σ2(t)]γ/2E([ sup
0≤t≤1

W (t)]γ).

Applying the reflection principle for the Wiener process {W (t), 0 ≤ t ≤ 1}, we get that

P ( sup
0≤t≤1

W (t) > x) = 2 P (Z > x)
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where Z is the standard Gaussian random variable. Hence

E([ sup
0≤t≤1

W (t)]γ) =

∫ ∞

0
γxγ−12ϕ(x)dx =

1√
π
2γ/2Γ(

γ + 1

2
).

where ϕ(.) is the standard Gaussian probability density function. Combining the above

inequalities, we get that

E([ sup
0≤t≤T

X(t)]γ) ≥ [σ2(T )]γ/2
1√
π
2γ/2Γ(

γ + 1

2
).

Similar arguments can be used to prove (ii) in Theorem 2.5.♢

Debicki and Tomanek (2009) has assumed that the function σ2(t) is concave in (i) and

convex in (ii) of Theorem 2.5. We could not justify the arguments under these assumptions

and hence we replaced ”concavity”in (i) by ”sub-additivity” in (i) and ”convexity” in (ii) by

”super-additivity” of the function σ2(t).

Proof of Theorem 2.4: In view of (2.9), it is sufficient to prove the results in Theorem 2.4

for the case T = 1. Observe that

P [ sup
0≤t≤1

BH
t > x] ≤ P [ sup

0≤t≤1
|BH

t | > x]

≤ 2 P [ sup
0≤t≤1

BH
t > x].

An application of this inequality combined with results in Theorem 2.5 proves the lower

bound in (i) in Theorem 2.4 and the upper bound in (ii) of Theorem 2.4. The lower bound

in (ii) of Theorem 2.4 can be obtained by observing that

E([ sup
0≤t≤1

|BH
T |]γ) ≥ E[|BH

1 |γ ]

= E[|Z|γ ]

=
1√
π
2γ/2Γ(

γ + 1

2
)

where Z is the standard Gaussian random variable.♢.

The next two results give bounds on the expectations of the exponential of the supremum

for the fBm over a finite interval [0, T ].
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Theorem 2.6: Suppose the process BH is the standard fractional Brownian motion with

Hurst index H ∈ [12 , 1). Then, for any λ > 0,

E[exp{λ sup
0≤t≤T

|BH
t |}] ≤ 1 + λ

√
8πTHe

λ2T2H

2 .(2. 14)

Theorem 2.7: Suppose BH is the standard fractional Brownian motion with Hurst index

H ∈ [12 , 1). Then, for any λ > 0, T > 0 such that λT 2H < 1
2 ,

E[exp{λ sup
0≤t≤T

(BH
t )2}] ≤ 1 + 2λ+ 8λ

T 2H

√
1− 2λT 2H

.(2. 15)

Let F be the distribution function of the random variable B∗H
T . Note that, for any λ > 0,

E[exp(B∗H
T )] =

∫ ∞

0
eλx dF (x)

= −
∫ ∞

0
eλx d(1− F (x))

= 1 + λ

∫ ∞

0
eλx(1− F (x)) dx

= 1 + λ

∫ ∞

0
eλxP (B∗H

T > x) dx

Now we use the bounds on P (B∗H
T > x) obtained earlier to get the inequality in Theorem

2.6. For details, see Mishra and Prakasa Rao (2013). Similarly we note that

E(exp[(B∗H
T )]2) =

∫ ∞

0
eλx

2
dF (x)

= 1 + 2λ

∫ ∞

0
xeλx

2
(1− F (x)) dx

= 1 + 2λ

∫ ∞

0
xeλxP (B∗H

T > x) dx

to obtain the inequality in Theorem 2.7. For details, see Prakasa Rao (2013).

3 Maximal inequalities and first passage times

Let the process BH = {BH
t , t ≥ 0} be the standard fractional Brownian motion with Hurst

index H. For any a > 0, define

ηHa = inf{t ≥ 0 : |BH
t | ≥ a}

and

ζHa = inf{t ≥ 0 : BH
t ≥ a}.
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Let

B∗H
T = sup

0≤t≤T
|BH

t |

and

SH
T = sup

0≤t≤T
BH

t .

Note that the random variables B∗H
T and SH

T are non-negative since BH
0 = 0 a.s.

Theorem 3.1: (Vardar (2011)) For any H ∈ (12 , 1) and for any T > 0,

(B∗H
T )2

∆
= (

T

ηH1
)2H

and

(SH
T )2

∆
= (

T

ζH1
)2H .

Furthermore

E[(SH
T )2] ≤ T 2H .

Proof : From the self-similarity of the fBm BH , it follows that

{BH
at , t ≥ 0} ∆

= {aHBH
t , t ≥ 0}

for any a > 0. Hence, for any x > 0,

P [(
a

ηH1
)2H ≤ x] = P [ηH1 ≥ a

x1/2H
]

= P [ sup
0≤t≤ a

x1/2H

|BH
t | ≤ 1]

= P [ sup
0≤t≤a

|BH
t

x1/2H
| ≤ 1]

= P [ sup
0≤t≤a

|BH
u | ≤

√
x] (by self-similarity of the process BH)

= P [(B∗H
a )2 ≤ x)].

Hence

(B∗H
a )2

∆
= (

a

η1
)2H .

Similar arguments show that

(SH
a )2

∆
= (

a

ζ1
)2H .
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Furthermore, for any x > 0,

P ( sup
0≤u≤a

|BH
u | ≤

√
x) = P ( sup

0≤u≤a
BH

u ≤
√
x and inf

0≤u≤a
BH

u ≥ −
√
x)

≤ P ( sup
0≤u≤a

BH
u ≤

√
x)

= P ((SH
a )2 ≤ x).

Therefore, for any x > 0,

P ((SH
a )2 ≤ x) = P ((

a

ζ1
)2H ≤ x)

and hence

E[(SH
a )2] = a2HE[(

1

ζ1
)2H ](3. 1)

= a2H
∫ ∞

0
E(e−xζ2H1 ) dx

from the elementary observation that for any positive random variable Z,

E(
1

Z
) =

∫ ∞

0
E(e−xZ)dx.

It is known that, for any H > 1
2 ,

E[e−λζ2Ha ] ≤ e−a
√
2λ

for every λ > 0 and a > 0 (cf. Decreusefond and Nualart (2008)). Applying this inequality

in (3.1), we get that

E[(B∗H
a )2] ≤ a2H

∫ ∞

0
e−

√
2xdx = a2H .

♢

As a corollary to Theorem 3.1, it follows that E(B∗H
a ) ≤ aH and E(SH

a ) ≤ aH by the

elementary inequality [E(Z)]2 ≤ E[Z2]. Furthermore,

P (B∗H
a > x) ≤ aH

x

and

P (SH
a > x) ≤ aH

x

for any a > 0 and x > 0 by the Chebyshev’s inequality.
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Results discussed above are due to Vardar (2011). An improved upper bound for P (SH
a >

x) was also obtained in Vardar (2011). It was shown that

P (SH
a > x) ≤

√
2aH

x
√
π
, a > 0, x > 0.

and hence, for any a > 0,

E(SH
a ) ≤

√
2√
π
aH .(3. 2)

Michna (1999) studied the asymptotic behaviour of the tail probabilities and first passage

times for fractional Brownian motion BH , H ∈ (12 , 1) with linear drift.

4 Maximal Inequalities Leading to Lower Bounds

We now discuss some maximal inequalities leading to lower bounds for functionals of the fBm.

An important inequality which was found to be useful in such discussions is the Khatri-Sidak

inequality proved in Khatri (1967) and Sidak (1967, 1968). Jogdeo (1970) and Schechtman

et al. (1998) gave simplified proofs of the result.

Theorem 4.1: (Khatri (1967); Sidak (1967, 1968)) If (X1, . . . , Xn) is a centered Gaussian

random vector, then

P ( max
1≤i≤n

|Xi| ≤ x) ≥ P (|X1| ≤ x) P ( max
2≤i≤n

|Xi| ≤ x)(4. 1)

for any x > 0.

Repeated applications of Theorem 4.1 show that

P ( max
1≤i≤n

|Xi| ≤ x) ≥ Πn
i=1P (|Xi| ≤ x)(4. 2)

for any centered Gaussian random vector (X1, . . . , Xn). Shao (2003) showed that

P ( max
1≤i≤n

|Xi| ≤ 1) ≥ 2−min(k,n−k)P ( max
1≤i≤k

|Xi| ≤ 1) P ( max
k+1≤i≤n

|Xi| ≤ 1)(4. 3)

for any 1 ≤ k ≤ n. Li (1999) proved the following general result.

Theorem 4.2: Let µ be a centered Gaussian probability measure on a separable Banach

space E. Then, for any 0 < λ < 1, and any symmetric convex sets A and B contained in E,

P (X ∈ A, Y ∈ B) ≥ P (X ∈ λA) P (Y ∈
√
1− λ2B)(4. 4)
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for any centered jointly Gaussian vectors X and Y in E.

Suppose {Xt, t ∈ T} is a centered Gaussian process. As a consequence of the Khatri-Sidak

inequality, it follows that

P (sup
t∈A

|Xt| ≤ x, |Xt0 | ≤ x) ≥ P (|Xt0 | ≤ x) P (sup
t∈A

|Xt| ≤ x)(4. 5)

for every subset A ⊂ T, t0 ∈ T and x > 0. If there is a countable set J and a Gaussian process

Y indexed by the set J such that

[sup
t∈J

|Yt| ≤ x] ⇒ [sup
t∈T

|Xt| ≤ x],

then

P (sup
t∈T

|Xt| ≤ x) ≥ Πt∈JP (|Yt| ≤ x).

Li and Shao (2001) discuss lower bounds for small ball probabilities for general Gaussian

processes extensively. We discuss special cases dealing with the fBm in some detail. Shao

(1999) obtained the following correlation inequality for a fBm BH : there exists a constant

dH > 0 such that,

P ( sup
0≤t≤a

|BH
t | ≤ x, sup

0≤t≤b
|BH

t −BH
a | ≤ y)

≥ dHP ( sup
0≤t≤a

|BH
t | ≤ x) P ( sup

a≤t≤b
|BH

t −BH
a | ≤ y)

for any 0 < a < b, x > 0, y > 0.

The following result due to Csorgo and Shao (1994) and Kuelbs et al. (1995) gives a

lower bound for centered Gaussian processes.

Theorem 4.3: Let the process {X(t), 0 ≤ t ≤ 1} be a centered Gaussian process with

X(0) = 0. Suppose there exists a function σ2(h) such that

E|X(s)−X(t)|2 ≤ σ2(|t− s|)

and there exists constants c1, c2 such that 0 < c1 ≤ c2 < 1 and

c1 σ(min(2h, 1)) ≤ σ(h) ≤ c2 σ(min)2h, 1)
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for 0 ≤ h ≤ 1. then , there exists a positive constant K depending on c1 and c2 such that

P ( sup
0≤t≤1

|X(t| ≤ σ(ϵ)) ≥ e−
K
ϵ .(4. 6)

The following example, due to Lifshits (1999), indicates the methods involved in obtaining

upper and lower bounds for small ball probabilities.

Let H > 0 and {ψi, i ≥ 0} be independent standard Gaussian random variables. Consider

the function f(t) = 1− |2t− 1|, 0 ≤ t ≤ 1 and let {u} denote the fractional part of any real

number u. Let

X(t) = ψ0t+
∞∑
i=1

2−iHψif({2it}), 0 ≤ t ≤ 1.(4. 7)

It can be seen that the process {X(t), 0 ≤ t ≤ 1} is a centered Gaussian process with

E|X(t)−X(s)|2 ≥ c|t− s|2H , 0 ≤ s, t ≤ 1 for some constant c > 0. . Note that

P ( sup
0≤t≤1

|X(t)| ≤ ϵ) ≥ P (
∞∑
i01

2−iH |ψi| ≤ ϵ)

≥ P (|ψi| ≤ ϵ2iH/2(1− 2H/2), i ≥ 0)

= Π∞
i=0P (|ψi| ≤ ϵ2iH/2(1− 2H/2))

≥ exp(−k1 log2(
1

ϵ
)))

for some positive constant k1 > 0. On the other hand,

P ( sup
0≤t≤1

|X(t)| ≤ ϵ) ≤ P (sup
k≥2

|X(2−k)| ≤ ϵ)

≤ P (sup
k≥2

|
k−1∑
i=1

2−iHψi2
−(k−i−1)| ≤ ϵ)

≤ P (sup
k≥2

|ψk| ≤ 2ϵ2kH)

= Π∞
k=2P (|ψ0 ≤ 2ϵ2kH)

≤ exp(−k2 log2(
1

ϵ
)))

for some positive constant k2 > 0.

The following result is an application of Theorem 4.3 (cf. Monrad and Rootzen (1995);

Shao (1993)).
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Theorem 4.4: Let the process BH be the fBm with index H ∈ (0, 1). Then there exists

constants 0 < K1 ≤ K2 <∞ depending only on H such that, for every 0 < ϵ ≤ 1,

−K2ϵ
−1/H ≤ logP ( sup

0≤t≤1
|BH

t | ≤ ϵ) ≤ −K1ϵ
−1/H .(4. 8)

Similar results for some functionals of the fBm were obtained in Kuelbs et al. (1995) and

Li and Shao (1999, 2001).

Let

Y H
t =

∫ t

0
BH

s ds, 0 ≤ t ≤ 1.

Li and Shao (2001) proved that there exists constants 0 < K1 ≤ K2 <∞ depending only on

H such that, for every 0 < ϵ ≤ 1,

−K2ϵ
−1/(1+H) ≤ logP ( sup

0≤t≤1
|Y H

t | ≤ ϵ) ≤ −K1ϵ
−1/(1+H).(4. 9)

The following result due to Li and Linde (1998) and Shao (2003) gives the exact rate of

convergence for small ball probabilities for fractional Brownian motion.

Theorem 4.5: Let BH = {BH
t , t ≥ 0} be the fBm with Hurst index H. Let

WH(t) =

∫ t

0
(t− s)(2H−1)/2dW (s)

where {W (t), t ≥ 0} is the standard Wiener process. Then

lim
ϵ→0

ϵ1/H log P ( sup
0≤t≤1

|BH
t | ≤ ϵ)(4. 10)

= lim
ϵ→0

ϵ1/H log P ( sup
0≤t≤1

|WH(t)| ≤
√
aHϵ)

= −cH

where 0 < cH <∞,

aH =
1

2H
+

∫ 0

−∞
((1− s)(2H−1)/2 − (−s)(2H−1)/2)2 ds

and

(
0.08√
2H

)1/H < cH < (
10√
2H

)1/H

for 0 < H < 1
2 .
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Kuelbs and Li (2000) obtained the following related result.

Theorem 4.6: Let BH = {BH
t , t ≥ 0} be a fBm with Hurst index H ∈ (0, 1) Let ρ(.) be a

non-negative bounded function on [0, 1] such that [ρ(t)]1/H is Riemann integrable on [0, 1].

Then

lim
ϵ→0

ϵ2 log P ( sup
0≤t≤1

|ρ(t)BH
t | ≤ ϵ) = −cH

∫ 1

0
[ρ(t)]1/Hdt(4. 11)

where cH is as defined in Theorem 4.5.

Talagrand (1996) obtained the following integral test for the fBm.

Theorem 4.7: Let BH = {BH
t , t ≥ 0} be a fBm with Hurst index H ∈ (0, 1). Let a(.) be a

non-decreasing function such that the function a(t)
tH

is bounded over the interval (0,∞). Then

P ( sup
0≤s≤t

|BH
s | < a(t) infinitely often)

is zero or one according as ∫ ∞

0
[a(t)]−1/Hψ(a(t)t−H) dt

is convergent or divergent. Here ψ(h) = P (sup0≤s≤1 |BH
s | ≤ h).

Kuelbs and Li (2000) proved a Wichura type functional law of iterated logarithm for a

fBm.

Let BH = {BH
t , t ≥ 0} be the fBm with Hurst index H ∈ (0, 1). Let

B∗H
T = sup

0≤s≤t
|BH

s |

and

Hn(t) =
MH

nt

(cHn2H/ log log n)1/2

where cH is as given in Theorem 4.5. Let M be the class of non-decreasing functions f :

[0,∞) → [0,∞) with f(0) = 0 and which are right continuous except possibly at zero. Let

Kα = {f ∈ M :

∫ ∞

0
[f(t)]−1/Hdt ≤ 1}.

Let the set M be equipped with the topology of weak convergence, that is, pointwise con-

vergence at all the continuity points of the limit. Kuelbs and Li (2000) proved the following

Wichura type functional law of the iterated logarithm.
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Theorem 4.8: (Kuelbs and Li (2000)) The sequence {Hn(t)} is relatively compact and the

set of all possible subsequential limits of the sequence {Hn(t)} in the weak topology is the

set Kα.

Related results on increments of the fBm are discussed in Li and Shao (2001) in a survey

on inequalities for Gaussian processes.

5 Limit theorems for Maximal Inequalities for fBM with Poly-

nomial Drift

We will now discuss some limit theorems for some maximal inequalities for a fBm with Hurst

index H ∈ (12 , 1) with polynomial drift. Results discussed here are from Prakasa Rao (2013).

Theorem 5.1: Suppose a > 0, δ > 0. Then, for any k ≥ 1,

−a
2

2
(
k

H
)2k/(2k−2H) H

k −H
≤ lim sup

T→∞

log P (sup0≤t≤T [B
H
t + atk] ≤ δa)

T 2k−2H
≤ −a

2

2
.(5. 1)

For H = 1
2 , the process BH is the Brownian motion and the result in Theorem 5.1

generalizes Theorem 2.2 in Li (2010) for the case of the Brownian motion.

Let g(t) = akt
k + ak−1t

k−1 + . . . + a1t be a polynomial of degree k with ak > 0. As a

corollary to Theorem 5.1, we can obtain the following result.

Theorem 5.2: Suppose x > 0. Then, for any k ≥ 1,

−a
2

2
(
k

H
)2k/(2k−2H) H

k −H
≤ lim sup

T→∞

log P (sup0≤t≤T [B
H
t + g(t)] ≤ x)

T 2k−2H
≤ −a

2

2
.(5. 2)

Applying the result in Theorem 5.2 for the process −BH which is again a fBm with Hurst

index H, the following result follows.

Theorem 5.3: Suppose x > 0. Then, for any k ≥ 1,

−a
2

2
(
k

H
)2k/(2k−2H) H

k −H
≤ lim sup

T→∞

log P (inf0≤t≤T [B
H
t − g(t)] ≥ −x)

T 2k−2H
≤ −a

2

2
.(5. 3)
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We now discuss some other results dealing with the supremum of a fBm BH on the

interval [0, T ].

Theorem 5.4: Let a > 0, σ > 0 and T > 0. Then

lim sup
δ→∞

log P (sup0≤t≤T (σB
H
t + at) ≥ δa)

δ2
≤ − a2

2σ2T
.(5. 4)

Duffield and O’Connell (1995) proved that,

lim
δ→∞

δ−2(1−H) log P (sup
t≥0

(BH
t − at) > δ) = − inf

c>0
c−2(1−H) (c+ a)2

2
.(5. 5)

This result deals with the tail probability of the supremum with linear drift over an infinite

horizon. Debicki et al. (1998) proved that, for H ∈ [12 , 1),

lim
δ→∞

δ−2(1−H) log P (sup
t≥0

(BH
t − at) > δ) = −1

2
(
a

H
)2H(

1

1−H
)2−2H .(5. 6)

They have also studied the asymptotic behaviour of the tail of the distribution function

P (sup
t≥0

(Z(t)− ct) > x)

as x → ∞ when the process {Z(t), t ≥ 0} is a fractional Brownian motion or a nonlinearly

scaled Brownian motion or a specific integrated stationary Gaussian process. This result

generalizes the earlier work of Norros (1994) and Duffield and O’Connell (1995). Their

results deal with processes with linear drift. Michna (1998,1999) studied the asymptotic

behaviour of tail probabilities of the supremum of a fractional Brownian motion with linear

drift over a finite time interval.

Theorem 5.5: Let a < 0, σ > 0 and T > 0. Then

lim inf
δ↓0

1

− log δ
log P ( sup

0≤t≤T
(σBH

t + at) ≤ −δa) ≥ −1.(5. 7)

Theorem 5.6: For any k ≥ 2, a > 0 and T > 0,

lim
δ→∞

log P (sup0≤t≤T (σB
H
t + atk) ≥ δa)

δ2
= − a2

2T 2H
.(5. 8)
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The next result extends the results obtained above for polynomial drift.

Theorem 5.7: Let g(t) = akt
k + ak−1t

k−1 + . . .+ a1t with ak > 0. Then, for any T > 0,

lim
x→∞

log P (sup0≤t≤T (B
H
t + g(t)) ≥ x)

x2
= − 1

2T 2H
.(5. 9)

6 Limit Theorems for Maximal Inequalities for Increments of

Fractional Brownian Motion

Let the process BH be the fractional Brownian motion with Hurst index H ∈ (0, 1) with

BH
0 = 0 a.s. From the self-similarity of the fBm BH and from the fact that the increments

of the process BH are stationary, it follows that, for any r > 0,

sup
s≤t≤s+r

|BH
t −BH

s | ∆
= sup

0≤t≤r
|BH

t −BH
0 |

= sup
0≤t≤r

|BH
t | a.s

∆
= rH sup

0≤t≤1
|BH

t |

and hence, for any x > 0,

P ( sup
s≤t≤s+r

|BH
t −BH

s | ≥ x) = P ( sup
0≤t≤1

|BH
t | > r−Hx).(6. 1)

In view of the above equation, it is possible to obtain maximal inequalities for the incre-

ments of the process fBm from the results discussed in earlier sections. However there are

some other results which need additional arguments. We will now discuss such results. Let

IHt = inf
0≤s≤t

BH
s ,

SH
t = sup

0≤s≤t
BH

s ,

RH
t = SH

t − IHt ,

and

νHt = sup
0≤u≤v≤t

(BH
u −BH

v ) = sup
0≤v≤t

( sup
0≤u≤v

(BH
u −BH

v )).
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Let

Y H
a = SH

a −BH
a

for any a > 0. Vardar (2011) proved that, for any y > 0,

P (Y H
a ≤ y) ≥ 1−

√
2aH

y
√
π
.(6. 2)

Caglar and Vardar (2012) proved the following theorem.

Theorem 6.1: Let BH be the fractional Brownian motion with BH
0 = 0 a.s. and H ∈ (12 , 1).

Then, for any a > 0, y > 0, √
2aH

2
√
π

≤ E(νHa ) ≤ 2
√
2aH√
π

(6. 3)

and

P (νHa > y) < P (RH
a ≥ y) ≤ 2

√
2aH

y
√
π
.(6. 4)

Let

XH
v = sup

0≤u≤v
(BH

u −BH
v ), v ≥ 0.

The process XH is called the loss process. It is self-similar and the random variable Xh
v

has the same distribution as the random variable SH
v . This observation follows from the

self-similarity of the fBm and the fact that the fBm has stationary increments.

Theorem 6.2: For any x > 0,

P (νt > x) ≥ Φ̄(
x

tH
)

where Φ̄(x) = 1−Φ(x),−∞ < x <∞ and Φ(.) is the standard normal distribution function.

The result stated above can be proved by the following arguments.

Proof of Theorem 6.2: Note that, for 0 ≤ v ≤ t,

P (XH
v > x) = P ( sup

0≤u≤v
BH

u > x)

≥ sup
0≤u≤v

P (BH
u > x)

= sup
0≤u≤v

Φ̄(
x

uH
)

= Φ̄(
x

vH
).
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Hence

P (νHt > x) = P ( sup
0≤v≤t

Xh
v > x)

≥ sup
0≤v≤t

P (Xh
v > x)

≥ sup
0≤v≤t

Φ̄(
x

vH
)

= Φ̄(
x

tH
).

As an application of Theorem 6.2, we see that

lim inf
x→∞

1

x2
log P (νHt ≥ x) ≥ lim

x→∞
1

x2
log Φ̄(

x

tH
) = − 1

2t2H
.(6. 5)

Using the second inequality in Theorem 1.4, it can be shown that, for x > η = E[sup0≤u≤v≤t(B
H
u −

BH
v )],

P (νHt > x) = P ( sup
0≤u≤v≤t

(BH
u −BH

v ) > x)

≤ 2e
− 1

2
(x−η)2

t2H .

Hence

lim sup
x→∞

1

x2
log P (νHt ≥ x) ≤ lim

x→∞
[
log 2

x2
− 1

x2
(x− η)2

2t2H
](6. 6)

= − 1

t2H
.

Combining the above results, we have the following result due to Caglar and Vardar

(2012).

Theorem 6.3: Let BH be the fractional Brownian motion with index H ∈ (12 , 1). Let

νHt = sup
0≤u≤v≤t

(BH
u −BH

v ).

Then, for any t > 0,

lim
x→∞

1

x2
log P (νHt > x) = − 1

2t2H
.(6. 7)
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Let Y H
t = µt + σBH

t , t ≥ 0 where −∞ < µ < ∞ and σ > 0. The process Y H is the

fractional Brownian motion with linear drift. Let

γHt = sup
0≤u≤v≤t

(Y H
u − Y H

v ).

Caglar and Vadar (2012) proved that, for any t > 0,

lim
x→∞

1

x2
log P (γHt > x) = − 1

2σ2t2H
.(6. 8)

The maximum loss of a stochastic process {Xs, 0 ≤ s ≤ t} over an interval [0, t], is defined

to be

sup
0≤u≤v≤t

(Xu −Xv).

Caglar and Vardar-Acar (2013) obtained bounds and asymptotic results on the distribution

of maximum loss of the the standard fBm BH with drift when H ∈ (1/2, 1). . Let

Y H
t = µt+ σBH

t , t ≥ 0,

IH,µ
t = inf

0≤v≤t
Y H
v , t ≥ 0,

SH,µ
t = sup

0≤v≤t
Y H
v , t ≥ 0,

RH,µ
t = SH,µ

t − IH,µ
t , t ≥ 0,

LH,µ
t = sup

0≤u≤t
(Y H

u − Y H
t ), t ≥ 0,

and

MH
t = sup

0≤u≤v≤t
(Yu − Yv), t ≥ 0,

Since the fBm is self-similar and has stationary increments, it can be shown that the

process LH,0 is self-similar and the random variables LH,0
v and SH,0

v have the same distribution

for every v ≥ 0. The following result is due to Caglar and Vardar-Acar (2013).

Theorem 6.4: For the fBm with Hurst index H ∈ (1/2, 1), drift µ ∈ R, and σ > 0,

√
2σtH

2
√
π

+min(µ, 0)t ≤ E(MH,µ
t ) ≤ E(RH,µ

t ) ≤ 2
√
2σtH√
π

+ |µ|t
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and

1− Φ((x+ µt)/(σtH)) ≤ P (MH,µ
t > x) ≤ P (RH,µ

t ≥ x) ≤ 2
√
2σtH

x
√
π

+
|µ|t
x

for x > 0 and t > 0.

Kuelbs et al. (1995) obtained the following result dealing with increments of the fBm.

Theorem 6.5: (Kuelbs et al. (1995)) Let BH be the fractional Brownian motion with Hurst

index H ∈ (0, 1). Let 0 ≤ β < H. Then there exists 0 < K1 ≤ K2 <∞ depending only on H

and β such that, for all 0 ≤ ϵ ≤ 1,

−K2ϵ
−1/(H−β) ≤ log P ( sup

0≤s,t≤1

|BH
s −BH

t |
|s− t|β

≤ ϵ) ≤ −K1ϵ
−1/(H−β).(6. 9)

Li and Shao (1999) proved a related result dealing with integrals of increments of a fBm.

Theorem 6.5: (Li and Shao (1999)) Let BH be a fractional Brownian motion with Hurst

index H ∈ (0, 1). Let p > 0, 0 ≤ q < 1 + pH, q ̸= 1. Then there exists 0 < K1 ≤ K2 < ∞
depending only on p, q and H such that, for all 0 ≤ ϵ ≤ 1,

−K2ϵ
−θ ≤ log P (

∫ 1

0

∫ 1

0

|BH
s −BH

t |p

|s− t|q
dtds ≤ ϵ) ≤ −K1ϵ

−θ(6. 10)

where θ = 1
H−max(0,q−1) .

7 One-sided Exit Problem for fractional Brownian Motion

We now consider the one-sided exit problem for the fractional Brownian motion. This deals

with the study of lower tail probabilities of the supremum of the fractional Brownian motion

over finite time interval (cf. Li and Shao (1964)).

Let BH = {BH
t , t ≥ 0} be the fractional Brownian motion with index H ∈ (0, 1). Let

SH
T = sup

0≤t≤T
BH

t

and

ζHa = inf{t ≥ 0 : BH
t ≥ a}, a > 0.

From the self-similarity of the fBm BH , it follows that

P (SH
T ≤ x) = P (SH

1 ≤ x

TH
).
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Hence the study of asymptotic limit of P (SH
T ≤ x) as T → ∞ for fixed x is equivalent to

that as x→ 0 for fixed T. It is obvious that

P (SH
T < a) = P (ζHa > T ).

Sinai (1997) showed that the distribution of the random variable ζHa has a probability density

function p(.) and, for H > 1
2 ,

p(T ) ≤ Constant (2H − 1)TH− 1
2
+b(H)

for T large where |b(H)| ≤ Constant (2H − 1). Molchan (1999, 2000) proved that

T−(1−H)e−k
√

log T ≤ P ( sup
0≤t≤T

BH
t ≤ 1) ≤ T−(1−H)ek

√
log T

for some positive constant k and T large. In a recent work, Aurzada (2011) proved the

following result.

Theorem 7.1: Let {BH
t , t ≥ 0} be the fBm with index H ∈ (0, 1). Then there is a positive

constant CH depending on h such that, for large T,

T−(1−H)(log T )−CH ≤ P ( sup
0≤t≤T

BH
t ≤ 1) ≤ T−(1−H)(log T )CH .(7. 1)

It can be shown that the constant CH in the lower bound is greater than 1
2H and the

constant CH in the upper bound is greater than 2
H − 1. Since the process BH is self-similar,

the result in Theorem 7.1 can be generalized to the lower tail of the supremum of the fBm.

Theorem 7.2: Let {BH
t , t ≥ 0} be the fBm with index H ∈ (0, 1). Then there is a positive

constant CH depending on h such that, for small ϵ > 0,

ϵ
(1−H)

H | log ϵ|−CH ≤ P ( sup
0≤t≤1

BH
t ≤ ϵ) ≤ ϵ

(1−H)
H | log ϵ|CH(7. 2)

Li and Shao (2004) proved that

− lim
T→∞

1

T
log P ( sup

0≤t≤T
e−tHBH

et ≤ 0) = dH(7. 3)

exists, and , as x→ 0,

P ( sup
0≤t≤1

BH
t ≤ x) = x2dH/2H+o(1)(7. 4)
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Results in Molchan (1999, 2000) show that dH = 1 −H. Unilateral small deviations for

some processes related to the fBm are discussed in Molchan (2008). Li and Shao (2004)

obtained the following result on the lower tail probability for the supremum of the fBm.

Theorem 7.3: Let BH be the standard fBm. Then the limit

p(x) ≡ lim
T→∞

1

T
log P ( sup

0≤t≤T
BH

t ≤ x)(7. 5)

exists for every x. Furthermore the function p(.) is left-continuous and

p(x) = sup
T>0

1

T
log P ( sup

0≤t≤T
BH

t ≤ x).(7. 6)

Since E(BH
0 B

H
t ) ≥ 0 for t ≥ 0, Slepian’s lemma is applicable and it implies that

P ( sup
0≤t≤T1+T2

BH
t ≤ x) ≥ P ( sup

0≤t≤T1

BH
t ≤ x) P ( sup

T1≤t≤T1+T2

BH
t ≤ x)

for all T1, T2 ≥ 0. From the stationarity of the process, it follows that

P ( sup
T1≤t≤T1+T2

BH
t ≤ x) = P ( sup

0≤t≤T2

BH
t ≤ x).

Hence

P ( sup
0≤t≤T1+T2

BH
t ≤ x) ≥ P ( sup

0≤t≤T1

BH
t ≤ x) P ( sup

0≤t≤T2

BH
t ≤ x)

or

log P ( sup
0≤t≤T1+T2

BH
t ≤ x) ≥ log P ( sup

0≤t≤T1

BH
t ≤ x) + log P ( sup

0≤t≤T2

BH
t ≤ x)(7. 7)

for all T1, T2 ≥ 0. Existence of the limit function p(.) follows from (7.7). Left-continuity

of the function p(x.) follows from the fact that p(.) is non-decreasing and that the function

P (sup0≤t≤T B
H
t ≤ x) is continuous in x for every t. The representation given by (7.6) is again

a consequence of the inequality proved in (7.7).♢

Baumgarten (2011) studied the asymptotic behaviour of the probability that a stochastic

process {Zt, t ≥ 0} does not exceed a constant barrier up to time T when Z is the composition

of two independent processes {Xt, t ∈ I} and {Yt, t ≥ 0}. Baumgarten (2011) proved the

following theorem.

Theorem 7.4: Let the process {BH
t ,−∞ < t < ∞} be the centered fBm with Hurst index

H ∈ (0, 1). Let {Yt, t ≥ 0} be a self-similar process with Hurst index λ > 0 with continuous
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paths. Suppose that, for any 0 < η < 1,

E[( sup
0≤t≤1

Yt)
−η] <∞

and

E[(− inf
0≤t≤1

Yt)
−η] <∞.

Then

P ( sup
0≤t≤T

X(Yt) ≤ 1) = T−λ+o(1)(7. 8)

as T → ∞.

Remarks: Note that the rate of convergence in the equation (7.8) depends only on λ but

not on H.

Consider the standard fractional Brownian motion {BH
t , t ≥ 0} with Hurst index H ∈

[0, 1]. Define the storage process

Y (t) = sup
σ≥t

(BH
σ −BH

t − c(σ − t))

where c > 0 is a given constant. The process {Y (t), t ≥ 0} is stationary and

P (Y (0) > u) = P (sup
t≥0

(BH
t − ct) > u).

Asymptotic behaviour of the tail distribution of the process Y was studied in Duffield and

O’Connel (1996), Norros (1997), Narayan (1999) and Husler and Piterbarg (1999). Narayan

used Fourier representations of the Brownian motion and fBm and and a similarity of their

geometric properties. Husler and Piterbarg (1999) used another method called Double sum

method (cf. Piterbarg (1999)). For detailed results, see Piterbarg (2001).

For any two given constants c > 0 and γ ∈ [0, 1], define a new process {Jγ(t), t ≥ 0} by

Jγ(t) = BH
t − ct− γ inf

s∈[0,t]
(BH

s − cs), t ≥ 0.(7. 9)

The process {Jγ(t), t ≥ 0} is called as a γ-reflected process with the fBm as input since it

reflects at rate γ when reaching its minimum. If γ = 1, then the process J1 is called the

workload process or queue length process (cf. Awad and Glynn (2009)). In risk theory, Jγ can
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be interpreted as a claim surplus process since the surplus process of an insurance portfolio

can be defined as

Uγ(t) = u+ ct−BH
t − γ sup

s∈[0,t]
(cs−BH

s ) = u− Jγ(t), t ≥ 0

for any initial reserve u ≥ 0. The process {Uγ(t), t ≥ 0} is called the risk process with tax

payments of a loss-carry-forward type (cf. Asmussen and Albercher( 2010)). Hashorva et al.

(2013) studied the tail asymptotic behaviour of the process Mγ(t), t ≥ 0}, where

Mγ(T ) = sup
t∈[0,T ]

Jγ(t)

for T ∈ (0,∞]. Husler and Piterbarg (1999) considered the case T = ∞. Debicki and Rolski

(2002) and Debilcki and Sikora (2011) studied the results when T ∈ (0,∞). It is known that

M1(t) → ∞ as t→ ∞ almost surely (cf. Duncan and Jin (2008)). For a complete discussion

on these results, see Hashorva et al. (2013).
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