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Abstract: We obtain some maximal inequalities for a centered fractional Brownian motion

BH ,H ∈ (12 , 1). For a fractional Brownian motion BH withH ∈ (12 , 1) with a polynomial drift

g(.), we study the asymptotic behaviour of the tail distribution function P (sup0≤t≤T (B
H
t +

g(t)) > a) as T → ∞ for fixed a and as a → ∞ for fixed T.

1 Introduction

Asymptotic behaviour of the distribution function of the supremum of centered Gaussian

processes on a compact interval and the related Borell inequality are discussed in Adler (1990).

Berman (1985) derived bounds for the supremum of Gaussain processes with stationary

increments over finite intervals. Michna (1998, 1999) studied the asymptotic behaviour of

tail probabilities for the supremum of a fractional Brownian motion (fBm) with linear drift

over a finite time interval. Debicki et al. (1998) studied the asymptotic behaviour of the

supremum for Gaussian processes with linear negative drift over infinite horizon. Their results

generalize and extend the earlier work in Norros (1994) and Duffield and O’Connell (1995).

We obtain some maximal inequalities for centered fractional Brownian motion BH . For a

fractional Brownian motion with polynomial drift g(.), we study the asymptotic behaviour

of the tail distribution function P (sup0≤t≤T (B
H
t + g(t)) > a) as T → ∞ for fixed a and as

a → ∞ for fixed T.

Let BH ≡ {BH
t ,−∞ < t < ∞} be a fractional Brownian motion (fBm) with Hurst index

H ∈ (12 , 1), that is, a centered Gaussian process with BH
0 = 0 and

Cov(BH
s , BH

t ) =
1

2
(|t|2H + |s|2H − |t− s|2H),−∞ ≤ s, t < ∞.

It is known that the fBm BH is self-similar, that is, for any c > 0,

{BH
ct ,−∞ < t < ∞} ∆

= {cHBH
t ,−∞ < t < ∞}
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in the sense that the processes specified on both sides have the same finite dimensional

distributions and it has stationary Gaussian increments. For a short survey of properties of

a fBm, see Prakasa Rao (2010). It is known that a fBm BH with the Hurst index H ∈ (12 , 1)

has the long range dependence property and it has been used for stochastic modeling of

phenomenon with long range dependence (cf. Prakasa Rao (2010)).

2 Maximal inequalities for centered fBm

The following result is due to Slepian (1962).

Theorem 2.1: (Slepian’s Lemma) Let the processes X1 = {X1(t), t ≥ 0} and X2 =

{X2(t), t ≥ 0} be centered Gaussian processes with E[X2
1 (t)] = E[X2

2 (t)] = 1. Let ρ1(t, s)

and ρ2(t, s) be the covariance functions of the processes X1 and X2 respectively. Suppose

that, for some δ > 0,

ρ1(t, s) ≥ ρ2(t, s), 0 ≤ t, s ≤ δ.

Then

P ( sup
0≤t≤T

X1(t) ≤ u) ≥ P ( sup
0≤t≤T

X2(t) ≤ u), u ∈ R

for any 0 ≤ T ≤ δ.

As a consequence of the Slepian’s lemma, it follows that, if a process {Xt, t ≥ 0} is a

centered almost surely continuous stationary Gaussian process with E(X0Xt) ≥ 0, t ≥ 0,

then

P ( sup
0≤t≤T+S

Xt ≤ x) ≥ P ( sup
0≤t≤T

Xt ≤ x) P ( sup
T≤t≤T+S

Xt ≤ x)

(by Slepian’s lemma)

= P ( sup
0≤t≤T

Xt ≤ x) P ( sup
0≤t≤S

Xt ≤ x)

(by stationarity)

for all T, S > 0 (cf. Ledoux and Talagrand (1991)). For a proof of the Slepian’s lemma, see

Leadbetter et al. (1983).

Let B̂H = {B̂H
t , t ≥ 0} be the scaled Brownian motion defined by B̂H

t = W (t2H), t ≥ 0

where {W (t), t ≥ 0} is the standard Wiener process. It is easy to see that the scaled Brownian
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motion B̂H obeys the reflection principle. Asymptotic behaviour of the tail probabilities for

the supremum of scaled Brownian motion are investigated in Debicki et al. (1998).

We note that the Gaussian processes BH and B̂H satisfy the conditions of the Slepian’s

lemma. Applying the Slepian’s lemma to the processes BH and B̂H , we get that

P ( sup
0≤t≤T

BH
t ≥ u) ≤ P ( sup

0≤t≤T
B̂H

t ≥ u), u ∈ R.

Applying the reflection principle which holds for the process B̂H , we get that

P ( sup
0≤t≤T

B̂H
t ≥ u) = 2 P (B̂H

T ≥ u), u ∈ R.

Hence

P ( sup
0≤t≤T

BH
t ≥ u) ≤ 2 P (B̂H

T ≥ u), u ∈ R.(2. 1)

Observe that B̂H
T is a Gaussian random variable with mean zero and variance T 2H . Therefore

P (B̂H
T ≥ u) = P (Z ≥ uT−H)

where Z is a standard Gaussian random variable. It is known that

P (Z ≥ u) ≤ 1

2
e−u2/2,

and

P (Z ≥ u) ≤ 1√
2πu

e−u2/2

for any u > 0 (cf. Ito and Mckean (1965), p.17; Kutoyants (1994), p.27). Applying these

inequalities, we can get the following maximal inequality for a fBm with Hurst index H ∈
(12 , 1) :

Theorem 2.2: Suppose the process BH is a centered fractional Brownian motion with Hurst

index H ∈ (12 , 1). Then

P ( sup
0≤t≤T

BH
t ≥ u) ≤ 2 min{1

2
e−T−2Hu2/2,

1√
2πuT−H

e−u2T−2H/2}.

The next result gives a bound on the expectation of the exponential of the maximum for

a fBm.
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Theorem 2.3: Suppose BH is a fractional Brownian motion with Hurst index H ∈ (12 , 1).

Then, for any λ > 0,

E[exp{λ sup
0≤t≤T

|BH
t |}] ≤ 1 + λ

√
8πTHe

λ2T2H

2 .(2. 2)

Proof : Let F denote the distribution function of the random variable

MH
T = sup

0≤t≤T
|BH

t |.

Construct the Gaussian process B̂H as described above. Observing that the process BH and

the process −BH are both fractional Brownian motions with Hurst index H, it is easy to see

that

P (MH
T ≥ u) ≤ 4 P (B̂H

T ≥ u), u ∈ R(2. 3)

(cf. Muneya and Shieh (2009)). Hence, for any λ > 0,

E[exp{λ sup
0≤t≤T

|BH
t |}]

= E[exp{λMH
T }]

=

∫ ∞

0
eλxF (dx)

= −
∫ ∞

0
eλxd(1− F (x))

= 1 + λ

∫ ∞

0
eλx(1− F (x)) dx

= 1 + λ

∫ ∞

0
eλxP (MH

T > x) dx

≤ 1 + 4λ

∫ ∞

0
eλxP (B̂H

T ≥ x) dx

= 1 + 4λ

∫ ∞

0
eλxP (T−HB̂H

T ≥ xT−H) dx

= 1 + 4λ

∫ ∞

0
eλxP (Z ≥ xT−H) dx

where Z is a standard Gaussian random variable. Applying the inequality

P (Z ≥ x) ≤ 1

2
e−x2/2, x > 0,

(cf. Kutoyants (1994), p.27), it follows that

E[exp{λ sup
0≤t≤T

|BH
t |}]
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≤ 1 + 4λ

∫ ∞

0
eλx(

1

2
exp[−x2T−2H

2
]) dx

≤ 1 + λ
√
8πTHe

λ2T2H

2 .

Following similar methods, we now estimate

E[exp{λ sup
0≤t≤T

(BH
t )2}]

for λ > 0.

Theorem 2.4: Suppose BH is a fractional Brownian motion with Hurst index H ∈ (12 , 1).

Then, for any λ > 0, T > 0 such that λT 2H < 1
2 ,

E[exp{λ sup
0≤t≤T

(BH
t )2}] ≤ 1 + 2λ+ 8λ

T 2H

√
1− 2λT 2H

.(2. 4)

Proof: Let F denote the distribution function of the random variable

MH
T = sup

0≤t≤T
|BH

t |.

Construct the Gaussian process B̂H as described above. Observing that the process BH and

the process −BH are both fractional Brownian motions with Hurst index H, it is easy to see

that

P (MH
T ≥ u) ≤ 4 P (B̂H

T ≥ u), u ∈ R(2. 5)

(cf. Muneya and Shieh (2009)). Hence, for any λ > 0 such that λT 2H < 1
2 ,

E[exp{λ sup
0≤t≤T

(BH
t )2}]

= E[exp{λ(MH
T )2}]

=

∫ ∞

0
eλx

2
F (dx)

= −
∫ ∞

0
eλx

2
d(1− F (x))

= 1 + 2λ

∫ ∞

0
xeλx

2
(1− F (x)) dx

= 1 + 2λ

∫ ∞

0
xeλx

2
P (MH

T > x) dx

≤ 1 + 8λ

∫ ∞

0
xeλx

2
P (B̂H

T ≥ x) dx
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= 1 + 8λ

∫ ∞

0
xeλx

2
P (T−HB̂H

T ≥ xT−H) dx

= 1 + 8λ

∫ ∞

0
xeλx

2
P (Z ≥ xT−H) dx

= 1 + 8λ[

∫ 1

0
xeλx

2
P (Z ≥ xT−H) dx+

∫ ∞

1
xeλx

2
P (Z ≥ xT−H) dx]

where Z is a standard Gaussian random variable. Applying the inequality

P (Z ≥ x) ≤ 1

2
e−x2/2, x > 0,

(cf. Kutoyants (1994), p.27) and

P (Z ≥ x) ≤ 1

x
√
2π

e−x2/2, x > 1,

(cf. Ito and McKean (1965), p.17), it follows that

E[exp{λ sup
0≤t≤T

|BH
t |2}]

≤ 1 + 8λ

∫ 1

0
xeλx

2
[
1

2
e−x2T−2H/2] dx

+8λ

∫ ∞

1
xeλx

2
[

1

xT−H
√
2π

e−x2T−2H/2] dx.

= 1 + 4λ

∫ 1

0
xeλx

2
e
− x2

2T2H dx

+8λ
TH

√
2π

[

∫ ∞

1
eλx

2
e−x2/2T 2H

] dx

= 1 + 4λ

∫ 1

0
x exp[−(

1

2T 2H
− λ)x2]dx

+8λ
TH

√
2π

∫ ∞

1
exp[−(

1

T 2H
− 2λ)

x2

2
]dx

≤ 1 + 2λ+ 8λ
TH

√
2π

∫ ∞

−∞
e−

x2

2σ2 dx

= 1 + 2λ+ 8λ
TH

√
2π

√
2πTH

√
1− 2λT 2H

= 1 + 2λ+ 8λ
T 2H

√
1− 2λT 2H

for 0 < λ < 1
2T 2H . Here σ2 = (T−2H − 2λ)−1.
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3 Asymptotics for Maximal Inequalities for fBm with Poly-

nomial Drift

We will now obtain some maximal inequalities for a fBm with Hurst index H ∈ (12 , 1) with

polynomial drift.

Let r > 1, 0 < ϵ < 1, a > 0, δ > 0 and k ≥ 1. We will now get a lower bound on

P ( sup
0≤t≤rnδ

[BH
t + atk] ≤ δa).

Note that

P ( sup
0≤t≤rnδ

[BH
t + atk] ≤ δa)(3. 1)

= P ( sup
ri−1δ≤t≤riδ

[BH
t + atk] ≤ δa, 1 ≤ i ≤ n;

sup
0≤t≤ϵδ

[BH
t + atk] ≤ δa; and

sup
ϵδ≤t≤δ

[BH
t + atk] ≤ δa)

≥ P ( sup
ri−1δ≤t≤riδ

[BH
t + arkiδk] ≤ δa, 1 ≤ i ≤ n;

sup
0≤t≤ϵδ

[BH
t + ϵkδk] ≤ δa; and

sup
ϵδ≤t≤δ

[BH
t + aδk] ≤ δa)

= P (δH sup
ri−1≤t≤ri

BH
t ≤ δa(1− rkiδk−1), 1 ≤ i ≤ n;

sup
0≤t≤ϵδ

[BH
t + ϵkδk] ≤ δa; and

sup
ϵδ≤t≤δ

[BH
t + aδk] ≤ δa)

(by self-similarity of the process BH)

= P (δH sup
ri−1≤t≤ri

BH
t ≤ δa(1− rkiδk−1), 1 ≤ i ≤ n;

δH sup
0≤t≤ϵ

BH
t ≤ δa(1− ϵk−1δk−1); and

δH sup
ϵ≤t≤1

BH
t ≤ δa(1− δk−1))

(by self-similarity of the process BH)

≥ Πn
i=1P ( sup

ri−1≤t≤ri
BH

t ≤ δ1−Ha(1− rkiδk−1))
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×P ( sup
0≤t≤ϵ

BH
t ≤ δ1−Ha(1− ϵk−1δk−1))

×P ( sup
ϵ≤t≤1

BH
t ≤ δ1−Ha(1− δk−1)).

The last inequality follows from the Slepian’s lemma (cf. Li and Shao (2004), Equation (3.3)).

Let

i0 = inf{2 ≤ i ≤ n :
b

[ri−1(r − 1)]H
≤ 1 and

rkiδk−1b

r(i−1)H
≥ 1}

where b = δ1−Ha. Observe that i0 depends only on a, δ, r, k andH. Let us construct a centered

Gaussian process B̂H with independent increments such that B̂H
0 = 0, E[B̂H

s B̂H
t ] = s2H

whenever 0 ≤ s ≤ t ≤ 1. Let i ∈ [i0, n]. An application of Theorem 2.1 (Slepian’s lemma)

shows that

P ( sup
ri−1≤t≤ri

BH
t ≤ δ1−Ha(1− rkiδk−1))

≥ P ( sup
ri−1≤t≤ri

B̂H
t ≤ δ1−Ha(1− rkiδk−1))

≥ P ( sup
ri−1≤t≤ri

(B̂H
t − B̂H

ri−1) ≤ b and B̂H
ri−1 ≤ −rkiδk−1b)

= P ( sup
0≤t≤(ri−1)(r−1)

B̂H
t ≤ b) P (B̂H

ri−1 ≤ −rkiδk−1b)

= P [|Z1| ≤
b

(ri−1(r − 1))H
]P [Z2 ≤ −rkiδk−1b

r(i−1)H
]

= J1J2 (say)

where Z1 and Z2 are standard Gaussian random variables. For any standard Gaussian

random variable Z, it is known that

P (|Z| ≤ u) ≤
√

2

π
u, 0 ≤ u ≤ 1

and

P (|Z] ≤ u) ≤ 1− e−u2/2

3u
, u ≥ 1

(cf. Li (2010)). Then

J1 ≥
b

3(ri−1(r − 1))H

and

J2 ≥
1

6 rkiδk−1b
r(i−1)H

e
−[ r

kiδk−1b

r(i−1)H
]2/2

.
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Hence

P ( sup
ri−1≤t≤ri

BH
t ≤ δ1−Ha(1− rkiδk−1))(3. 2)

≥ b

3(ri−1(r − 1))H
1

6 rkiδk−1b
r(i−1)H

e
−[ r

kiδk−1b

r(i−1)H
]2/2

=
1

18(r − 1)Hrkiδk−1
e
−[ r

kiδk−1b

r(i−1)H
]2/2

.

Furthermore, for any 0 < α < β < ∞, and for any x ∈ R,

(3. 3)

P ( sup
α≤t≤β

BH
t ≤ x)

= P ( sup
α≤t≤β

(BH
t −BH

α +BH
α ) ≤ x)

≥ P ( sup
α≤t≤β

(BH
t −BH

α ) ≤ (β − α)|x|+ (β − α)H and BH
α ≤ x− (β − α)|x| − (β − α)H)

≥ P ( sup
α≤t≤β

(BH
t −BH

α ) ≤ (β − α)|x|+ (β − α)H)P (BH
α ≤ x− (β − α)|x| − (β − α)H)

(by the Slepian’s lemma)

= P ( sup
0≤t≤β−α

BH
t ≤ (β − α)|x|+ (β − α)H)P (BH

α ≤ x− (β − α)|x| − (β − α)H)

(by the stationarity of increments of the process)

≥ P ( sup
0≤t≤β−α

B̂H
t ≤ (β − α)|x|+ (β − α)H)P (BH

α ≤ x− (β − α)|x| − (β − α)H)

(by the Slepian’s lemma)

= P (|B̂H
β−α| ≤ (β − α)|x|+ (β − α)H)P (BH

α ≤ x− (β − α)|x| − (β − α)H)

(by the reflection principle of the process B̂H)

= P (|Z1| ≤ (β − α)1−H |x|+ 1)P (Z2 ≤
x− (β − α)|x| − (β − α)H

αH
)

> 0.

Here Z1 and Z2 are standard Gaussian random variables. In addition

P ( sup
0≤t≤ϵ

BH
t ≤ δ1−Ha(1− ϵk−1δk−1))(3. 4)

≥ P ( sup
0≤t≤ϵ

B̂H
t ≤ δ1−Ha(1− ϵk−1δk−1))
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= P (|B̂H
ϵ | ≤ δ1−Ha(1− ϵk−1δk−1))

= P (|Z3| ≤
δ1−Ha(1− ϵk−1δk−1)

ϵH
)

> 0

where Z3 is a standard Gaussian random variable. Let

C(a, δ, r, k,H)(3. 5)

= Πi0−1
i=1 P ( sup

ri−1≤t≤ri
BH

t ≤ δ1−Ha(1− rkiδk−1))

×P ( sup
0≤t≤ϵ

BH
t ≤ δ1−Ha(1− ϵk−1δk−1))

×P ( sup
ϵ≤t≤1

BH
t ≤ δ1−Ha(1− δk−1)).

Inequalities (3.3) and (3.4) show that C(a, δ, r, k,H) > 0. Hence

P ( sup
0≤t≤rnδ

[BH
t + atk] ≤ δa)(3. 6)

≥ C(a, δ, r, k,H)Πn
i=i0P ( sup

ri−1≤t≤ri
BH

t ≤ δ1−Ha(1− rkiδk−1))

≥ C(a, δ, r, k,H)Πn
i=i0

1

18(r − 1)Hrkiδk−1
e
−[ r

kiδk−1b

r(i−1)H
]2/2

.

Therefore, for any r > 1,

lim sup
T→∞

log P (sup0≤t≤T [B
H
t + atk] ≤ δa)

T 2k−2H
(3. 7)

≥ lim sup
n→∞

log P (sup0≤t≤rnδ[B
H
t + atk] ≤ δa)

(rnδ)2k−2H

≥ −a2

2

r2k

r2k−2H − 1
≡ −a2

2
f(r) (say)

Since the inequality derived above holds for every r > 1, it follows that

lim sup
T→∞

log P (sup0≤t≤T [B
H
t + atk] ≤ δa)

T 2k−2H
≥ −a2

2
min
r≥1

f(r).(3. 8)

It is easy to check that the function f(r) attains its minimum over the interval (1,∞) when

r = ( k
H )1/(2k−2H) and the minimum value is

(
k

H
)2k/(2k−2H) H

k −H
.
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Hence

lim sup
T→∞

log P (sup0≤t≤T [B
H
t + atk] ≤ δa)

T 2k−2H
≥ −a2

2
(
k

H
)2k/(2k−2H) H

k −H
.(3. 9)

Let us now obtain an upper bound for

P ( sup
0≤t≤T

[BH
t + atk] ≤ δa)

for large T. Observe that

P ( sup
0≤t≤T

[BH
t + atk] ≤ δa) ≤ P ([BH

T + aT k] ≤ δa)(3. 10)

= P (BH
T ≤ δa− aT k)

=
1

2
(1− P (|Z| ≤ aT k − δa

TH
))

≤ 1

2
e
− (aTk−δa)2

2T2H

where Z is a standard Gaussian random variable and hence

lim sup
T→∞

log P (sup0≤t≤T [B
H
t + atk] ≤ δa)

T 2k−2H
≤ −a2

2
.(3. 11)

Combining the inequalities (3.9) and (3.11), we obtain the following theorem.

Theorem 3.1: Suppose a > 0, δ > 0. Then, for any k ≥ 1,

−a2

2
(
k

H
)2k/(2k−2H) H

k −H
≤ lim sup

T→∞

log P (sup0≤t≤T [B
H
t + atk] ≤ δa)

T 2k−2H
≤ −a2

2
.(3. 12)

For H = 1
2 , the process BH is the Brownian motion and the result in Theorem 3.1

generalizes Theorem 2.2 in Li (2010) for the case of the Brownian motion.

Let g(t) = akt
k + ak−1t

k−1 + . . . + a1t be a polynomial of degree k with ak > 0. As a

corollary to Theorem 3.1, we can obtain the following result.

Theorem 3.2: Suppose x > 0. Then, for any k ≥ 1,

−a2

2
(
k

H
)2k/(2k−2H) H

k −H
≤ lim sup

T→∞

log P (sup0≤t≤T [B
H
t + g(t)] ≤ x)

T 2k−2H
≤ −a2

2
.(3. 13)

Applying the result in Theorem 3.2 for the process −BH which is again a fBm with Hurst

index H, the following result follows.
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Theorem 3.3: Suppose x > 0. Then, for any k ≥ 1,

−a2

2
(
k

H
)2k/(2k−2H) H

k −H
≤ lim sup

T→∞

log P (inf0≤t≤T [B
H
t − g(t)] ≥ −x)

T 2k−2H
≤ −a2

2
.(3. 14)

We now discuss some other results dealing with the supremum of a fBm BH on the

interval [0, T ].

Theorem 3.4: Let a > 0, σ > 0 and T > 0. Then

lim sup
δ→∞

log P (sup0≤t≤T (σB
H
t + at) ≥ δa)

δ2
≤ − a2

2σ2T 2H
.(3. 15)

Proof: Let B̂H be the scaled standard Brownian motion as discussed Section 1. Observe

that

P ( sup
0≤t≤T

(σBH
t + at) ≥ δa) ≤ P ( sup

0≤t≤T
(σBH

t + aT ) ≥ δa)(3. 16)

= P ( sup
0≤t≤T

BH
t ≥ (δ − T )

a

σ
)

≤ P ( sup
0≤t≤T

B̂H
t ≥ (δ − T )

a

σ
)

= 2 P (B̂H
T ≥ (δ − T )

a

σ
)

= 2 P (Z ≥ T−H(δ − T )
a

σ
)

≤ exp[−a2(δ − T )2

2σ2T 2H
].

Hence

lim sup
δ→∞

log P (sup0≤t≤T (σB
H
t + at) ≥ δa)

δ2
≤ − a2

2σ2T 2H
.(3. 17)

Remarks : Duffield and O’connell (1995) proved that

lim
δ→∞

δ−2(1−H) log P (sup
t≥0

(BH
t − at) > δ) = − inf

c>0
c−2(1−H) (c+ a)2

2
.

This result deals with the tail probability of the supremum of a fBm with linear drift over

an infinite horizon and gives the exact rate of convergence. Debicki et al. (1998) proved that

lim
δ→∞

δ−2(1−H) log P (sup
t≥0

(BH
t − at) > δ) = −1

2
(
a

H
)2H(

1

1−H
)2−2H .
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Theorem 3.5: Let a < 0, σ > 0 and T > 0. Then

lim inf
δ↓0

1

− log δ
log P ( sup

0≤t≤T
(σBH

t + at) ≤ −δa) ≥ −1.(3. 18)

Proof: Let B̂H be a Gaussian Markov process with independent increments as discussed

Section 1. For small δ > 0, it follows from Ledoux (1996) (Equation (7.3)) that

P ( sup
0≤t≤T

(σBH
t + at) ≤ −δa) ≥ P ( sup

0≤t≤T
σBH

t ≤ −δa)(3. 19)

= P ( sup
0≤t≤T

BH
t ≤ −δa

σ
)

≥ P ( sup
0≤t≤T

B̂H
t ≤ −δa

σ
)

= P (|B̂H
T | ≤ −δa

σ
)

= P (|Z| ≤ − δa

THσ
)

=
c(a, σ)a

σTH
δ

where c(a, σ) is a constant depending only on σ and a. Hence

lim inf
δ↓0

1

− log δ
log P ( sup

0≤t≤T
(σBH

t + at) ≤ −δa) ≥ −1.

4 Limit Theorems for supremum of a fBm with Polynomial

Drift

We now discuss asymptotic behaviour of the tail probabilities for the supremum of a fBm

with polynomial drift over a finite time interval [0, T ].

Theorem 4.1: For any k ≥ 2, a > 0 and T > 0,

lim
δ→∞

log P (sup0≤t≤T (σB
H
t + atk) ≥ δa)

δ2
= − a2

2T 2H
.(4. 1)

Proof : For sufficiently large δ,

P ( sup
0≤t≤T

(BH
t + atk) ≥ δa) ≥ P ( sup

0≤t≤T
BH

t ≥ δa)
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≥ P (BH
T ≥ δa)

= P (Z ≥ δa

TH
)

≥ 1

6δaT−H
e
− δ2a2

2T2H .

Hence

lim inf
δ→∞

log P (sup0≤t≤T (σB
H
t + atk) ≥ δa)

δ2
≥ − a2

2T 2H
.(4. 2)

Note that, for sufficiently large δ,

P ( sup
0≤t≤T

(BH
t + atk) ≥ δa) ≤ P ( sup

0≤t≤T
(BH

t + aT k−1t) ≥ δ

T k−1
aT k−1).

Applying Theorem 3.4 with a replaced by aT k−1 and δ replaced by δ
Tk−1 , we get that

lim sup
δ→∞

log P (sup0≤t≤T (B
H
t + atk) ≥ δa)

( δ
Tk−1 )2

≤ lim sup
δ→∞

log P (sup0≤t≤T (B
H
t + aT k−1t) ≥ δ

Tk−1aT
k−1)

( δ
Tk−1 )2

≤ −(aT k−1)2

2T 2H
.

or equivalently

lim sup
δ→∞

log P (sup0≤t≤T (B
H
t + atk) ≥ δa)

δ2
≤ − a2

2T 2H
.(4. 3)

Combining the relations (4.2) and (4.3), we get that

lim
δ→∞

log P (sup0≤t≤T (B
H
t + atk) ≥ δa)

δ2
= − a2

2T 2H
.(4. 4)

Theorem 4.2: Let g(t) = akt
k + ak−1t

k−1 + . . .+ a1t with ak > 0. Then, for any T > 0,

lim
x→∞

log P (sup0≤t≤T (B
H
t + g(t)) ≥ x)

x2
= − 1

2T 2H
.(4. 5)

Proof: Let M = sup0≤t≤T g(t) and m = inf0≤t≤T g(t). Then, for any x > M,

P ( sup
0≤t≤T

(BH
t + g(t)) ≥ x) ≤ P ( sup

0≤t≤T
(BH

t +M + tk) ≥ x)

= P ( sup
0≤t≤T

(BH
t + tk) ≥ x−M)

14



and hence, by Theorem 4.1, it follows that

lim sup
x→∞

log P (sup0≤t≤T (B
H
t + g(t)) ≥ x)

x2
(4. 6)

≤ lim sup
x→∞

log P (sup0≤t≤T (B
H
t + tk) ≥ x−M)

x2

= lim sup
x→∞

log P (sup0≤t≤T (B
H
t + tk) ≥ x−M)

(x−M)2
(x−M)2

x2

= − 1

2T 2H
.

Observe that

P ( sup
0≤t≤T

(BH
t + g(t)) ≥ x) ≥ P ( sup

0≤t≤T
(BH

t +m− T k + tk) ≥ x)

= P ( sup
0≤t≤T

(BH
t + tk) ≥ x−m+ T k)

.

Hence

lim inf
x→∞

log P (sup0≤t≤T (B
H
t + g(t)) ≥ x)

x2
(4. 7)

≥ lim inf
x→∞

log P (sup0≤t≤T (B
H
t + tk) ≥ x−m+ T k)

x2

= lim inf
x→∞

log P (sup0≤t≤T (B
H
t + tk) ≥ x−m+ T k)

(x−m+ T k)2
(x−m+ T k)2

x2

=
−1

2T 2H
.

The last equality follows again from Theorem 4.1. Combining the relations (4.6) and

(4.7), it follows that

lim
x→∞

log P (sup0≤t≤T (B
H
t + g(t)) ≥ x)

x2
=

−1

2T 2H
.(4. 8)
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