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Abstract

A self-complementary (di)graph is a (di)graph isomorphic to its complement. In this
paper we prove that, for a self-complementary graph G, finding its clique number ω(G),
independence number α(G) and chromatic number χ(G) are all NP-hard, whereas check-
ing whether its chromatic number is less than or equal to an integer k, for k ≥ 3; and
whether its clique number and independence number are greater than or equal to an
integer k, for k ≥ 3, are in P. We further prove that the domination number γ(G)
and the differences χ(G) − ω(G), χ(G) − γ(G) and ω(G) − γ(G) can be arbitrarily
large for regular self-complementary graphs. We also prove the Hadwiger conjecture
is true for self-complementary graphs. Furthermore, we prove that the Hadwiger num-
ber for regular self-complementary graph of order n is b(n+ 1)/2c. For the class of
self-complementary digraphs, we disprove a conjecture made in 1979 that every strongly
connected self-complementary digraph has a Hamiltonian dipath. We also show that
self-complementary graphs with arbitrarily large vertex connectivity do not satisfy this
conjecture.

Keywords: self-complementary graphs, computational complexity, anti-morphism, comple-
menting permutation, Hadwiger conjecture, Hadwiger number, self-complementary digraphs.

1 Introduction

Self-complementary graphs (sc-graphs in short) are one of the well studied graph classes.
This is probably due to the algebraic insight into the adjacency of its vertices, found in the
very first, and seminal paper [1] on this topic by Sachs in 1962 (also, later, independently by
∗First draft uploaded on Nov. 1, 2014. Revised on Nov. 13, 2014
†Email: siddanib@yahoo.co.in
‡Corresponding author. Email: umakant.iitkgp@gmail.com
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Ringel [2]). This technique is further elaborated by Gibbs [3] and Clapham [4]. In the past
five decades, hundreds of papers have exploited this technique and proved many noteworthy
results on sc-graphs. Graph coloring and maximum clique size are the most important and
applied graph problems, and belong to the first identified NP-complete problems in graphs.
Moreover the independent set problem can be polynomially related to the maximum clique
problem. In spite of the abundance of rich results on sc-graphs, complexity of finding these
important graph parameters is not yet known. In the first half of this paper, we aim at
classifying the computational complexity of finding such parameters when restricted to sc-
graphs. In particular, we present surprisingly simple proofs of NP-hardness of finding the
chromatic number, clique number and independence number of sc-graphs. On the contrary
we prove that for sc-graphs, checking whether the chromatic number is less than or equal
to an integer k, for k ≥ 3; and whether the clique number and the independence number
are greater than or equal to an integer k, for k ≥ 3, are in P.

In this paper all graphs and digraphs, unless mentioned otherwise, are simple and finite.
For definitions on graphs, we refer to Harary [5]; for complexity, we refer to Garey and
Johnson [6]; and for sc-graphs, we refer to the extensive survey by Farrugia [7]. Let G(V, E)
be a graph of order n = |V(G)| and size m = |E(G)|. It is a sc-graph if G is isomorphic to its
complement G. So the number of edges m = n(n − 1)/4, and hence n ≡ 0, 1 (mod 4). An
anti-morphism σ is an isomorphism between a graph and its complement that exchanges
edges and non-edges. An anti-morphism of a sc-graph can be expressed as a permutation
σ on V(G) i.e. σ(G) = G. In this article we refer σ as a complementing permutation (c.p.)
of G. For vertices v,w ∈ G, v ∼ w in G if and only if σ(v) ∼ σ(w) in G. As usual the c.p.
can be expressed as a product of disjoint cycles of the permutation. A sc-graph may have
several c.p.s, and non-isomorphic sc-graphs may have the same c.p. The c.p. adds a few
restrictions on the length of these cycles. For further details please refer [7].

It is easy to construct certain families of sc-graphs. For example, given any graph G,
construct G—G—G—G, where G—H have all vertices and edges of G and H, along with all
edges between V(G) and V(H). It can be easily checked that this is a sc-graph. We call
this operation as the P4 − construction of G. A slight variation of the P4 − construction
of G is the A − construction of G, where we add a new vertex to the P4 − construction
of G and join it to all vertices of the two G. This also results in a sc-graph. For other such
constructions of sc-graphs, please refer [7, p. 13].

As we shall see later, lexicographic products play an important role in constructing bigger
sc-graphs. Let G and H be graphs with vertex sets {a, b, ...} and {x, y, ...} respectively. The
lexicographic product G ◦H has vertex set V(G)×V(H), and (a, x)(b, y) ∈ E(G ◦H) if a = b

and xy ∈ E(H), or ab ∈ E(G). It turns out that lexicographic products of sc-graphs result
in another sc-graph. Using this we construct a family of regular sc-graphs with increasing
χ(G) −ω(G), thus allowing it to be arbitrarily large.
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The sc-graphs either have diameter 2 or 3. Finding the domination number γ(G) of sc-
graphs with diameter 3 is relatively easy. Paley graphs are regular sc-graphs with diameter
2. Using Paley graphs of a certain kind and some of its properties, we conclude that γ(G)
and the differences χ(G)−γ(G) & ω(G)−γ(G) can be arbitrarily high for regular sc-graphs.

Let (v1, v2, ..., vr) be a cycle of a c.p. with p ≥ 2 of an sc-graph G. Without loss of
generality assume that v1v2 ∈ E(G), then because of the c.p. v2v3 ∈ E(G), v3v4 ∈ E(G) and
so on. Hence vr−1vr should belong to E(G) (else v1vr ∈ E(G), which contradicts v1v2 ∈ E(G)).
So r is even. This cycle (v1, v2, ..., vr) is a c.p. of a smaller induced sc-graph, which implies
r ≡ 0, 1 (mod 4). Since r is even, r = 4k, i.e. each of the cycle lengths are a multiple of
4. For a sc-graph on 4k vertices, we can divide 4k into cycles of lengths in multiples of
4. In fact different c.p. produce cycles of different lengths, but which are multiples of 4.
However for a sc-graph of order 4k+ 1, we have a single fixed vertex and the lengths of the
rest of cycles are multiples of 4. As a result, a sc-graph of order 4k + 1 has at least one
vertex with degree 2k. Also different c.p.s result in different fixed vertices. Not only that,
the c.p. provides a deeper restriction on the structure of the sc-graph. Since σ is a c.p.,
σ2 is an automorphism. It is easy to see that σodd are c.p.s and σeven are automorphisms.
In any cycle of c.p. σ, the vertices alternate in degrees, and the sum of the consecutive
degrees is n − 1. Now consider a cycle of length 4r, it will have 2r pairs of vertices with
complementing degrees. The sc-graph induced on such a cycle has odd vertices (o1, o2, .., o2r)
and even vertices (e1, e2, .., e2r). Due to the automorphism σ2, the neighbours of one vertex
determines the neighbours of other vertices in the group. In the sc-graph there will be 2r2

edges — half of possible edges — between these groups.

It is obvious that, for any graph G, χ(G) ≥ ω(G), and this difference can be arbitrarily
large (seen easily from the Mycielski’s construction [8]). Although a graph with chromatic
number k need not have a clique of size k, in [9], Hadwiger conjectured that it must be
contractible to a clique of size k i.e. if χ(G) = k, then G > Kk. For k = 5, Hadwiger
conjecture implies the Four Color Theorem. Thus Hadwiger conjecture is considerably
stronger that the Four Color Theorem. The Hadwiger number η(G) of a graph G is the
size k of the largest clique, known as the Hadwiger clique, obtained by contracting edges
of G. This is equivalent to the largest k such that the vertices of G can be partitioned into
k partitions V1, V2, . . . , Vk, each inducing a connected subgraph, such that between any two
sets of the partition there is an edge of G. Thus the Hadwiger conjecture can be stated as
follows:

Conjecture 1.1. (Hadwiger) For any graph G, η(G) ≥ χ(G).

Using the adjacency of vertices just described in sc-graphs, we prove that Hadwiger
conjecture is true for sc-graphs. Furthermore, we find the Hadwiger number for regular
sc-graphs, and also for chordal sc-graphs, of order n is b(n+ 1)/2c.
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By a complete symmetric digraph K∗
n(V,A), we mean that for every pair of vertices

u, v ∈ V(K∗
n), both directed arcs uv (read u to v) & vu ∈ A(K∗

n). A sc-digraph D is
isomorphic to its complement with respect to K∗

n i.e. D ∼= K∗
n −D. A digraph is strongly

connected if there are directed paths uv and vu for any two vertices u and v. In 1979,
it was conjectured in [10] (see also [7, p. 58]) on the existence of Hamiltonian dipaths in
strongly connected sc-digraphs. We disprove this conjecture, by explicitly constructing an
infinite set of counterexamples with arbitrarily large vertex connectivity.

The Ramsey number R(k, k) is the smallest n such that for any graph G of order n,
either G or G contains a Kk i.e. G contains a Kk or Kk. Of course any sc-graph of order
at least R(k, k) must contain a Kk. However the converse is not true. This can be easily
verified on a P4 − construction of Kk. The following stronger conjecture was made by
Chvátal et al. [11].

Conjecture 1.2. Let n∗(k) be the greatest n for which there exists at least one sc-graph of
order n which does not contain a Kk. Then n∗(k) = R(k, k) − 1.

For an extensive study on Ramsey numbers, please refer [12].

For a graph G and a set of vertices S ⊆ V , an induced subgraph G[S] has vertex set S
and edges whose both endpoints are in S.

Nordhus and Gaddum, in their well known paper [13], proved the following bounds on
sum of the chromatic number of a graph and its complement: 2

√
n ≤ χ(G) + χ(G) ≤ n+ 1.

So for a sc-graph
√
n ≤ χ(Gsc) ≤ (n+ 1)/2.

Below we list the problems whose computational complexity has been analysed or re-
viewed in this paper.

• MC: Given a graph G, find its clique number ω(G).

• MI: Given a graph G, find its independence number α(G).

• C: Given a graph G, find its chromatic number χ(G).

• C: Given a graph G and an integer k, check whether G contains a set S of
pairwise adjacent vertices with |S| ≥ k.

• IS: Given a graph G and an integer k, check whether G contains a set S of
pairwise non-adjacent vertices with |S| ≥ k.

• k-C: Given a graph G and an integer k, check whether G is k-colorable.

• 3-C: Given a graph G and an integer k, check whether G is 3-colorable.
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• HP: Given a graph G, check whether G has a path that goes through every
vertex of the graph.

• HC: Given a graph G, check whether G has a cycle that goes through every
vertex of the graph.

• 2-F: Given a graph G, check whether G has collection of disjoint cycles contain-
ing all vertices of the graph.

• I: Given graphs G and H, check whether they are isomorphic.

• R: Given a graph G and a class of graphs, check whether G belongs to that
class.

I is an important problem in algorithmic graph theory. For general graphs
we do not know whether it belongs to P or NP-complete. We say a problem is GI-complete
if it can be polynomially reduced to I.

Motivation: The study of the sc-graphs is motivated due to the following factors.

• Because of the c.p.s and automorphisms, we have a good understanding of the ad-
jacency of vertices in sc-graphs, hence it is natural to expect certain problems on
graph parameters will be easier to solve when restricted to sc-graphs. Identifying such
problems and their characterisation, if possible, makes sc-graphs worth investigating.

• sc-graphs are effectively used to find lower bounds of Ramsey numbers R(k, k) [14, 15,
16, 17, 18].

• sc-graphs serve as counter examples to several conjectures: C5 being the smallest non-
perfect graph, the line graph L(K3,3 − e) being the smallest perfect graph with no even
pair in it or its complement, and others [19].

Organization: Section 2 deals with the main theme of this paper i.e. computational
complexity results on sc-graphs. We first review some of the standard complexity results
on sc-graphs. Then we prove NP-hardness of MC, MI and C for sc-
graphs. Surprisingly, next we prove that C, IS and k-C for sc-graphs are
in P. We end this section by showing that the the domination number γ(G) as well as the
differences χ(G)−ω(G), χ(G)−γ(G) & ω(G)−γ(G) can be arbitrarily large for regular sc-
graphs. In Section 3, first we prove the Hadwiger conjecture for sc-graphs, following which
we find the Hadwiger number for regular sc-graphs and chordal sc-graphs. In Section 4,
we disprove the conjecture on the existence of Hamiltonian dipaths in strongly connected

5



sc-digraph, by explicitly constructing an infinite set of counterexamples with arbitrarily large
vertex connectivity. Section 5 contains a few open problems we touch upon in this paper,
ending with some concluding remarks.

2 Complexity Results

Apart from the structural insights, the use of c.p.s has played a pivotal role in solving many
of the problems regarding sc-graphs. Clapham has used this technique to solve HP
in sc-graphs [4], as well as for certain infinite sc-graphs [20]. Rao has repeatedly used
this technique to determine the lengths of cycles in sc-graphs [21], a good characterization
(including recognition) of 2-F in sc-graphs [22] and good characterisation (including
recognition) of HC in sc-graphs [23]. These were used to find polynomial algorithms
[23, 24] for 2-F, HP and HC in sc-graphs, whenever they exist. Now we
look into some of the difficult problems concerning sc-graphs.

As discussed previously, I is one of the most important problems in graph
theory, which deals with distinguishing members of a class from one another. R
is also another fundamental problem for any class of graphs, which deals with distinguish-
ing members of a class from non-members. There is an important connection between
I for graphs and R for sc-graphs. Had the I been polyno-
mial, we would have solved R for sc-graphs, by just checking whether the graph
and its complement are isomorphic or not. In [25] Colbourn and Colbourn proved that if
there is a polynomial algorithm for R for sc-graphs then I for graphs
will be polynomial, hence proving R for sc-graphs is polynomially equivalent to
I for graphs. It is natural to expect that the I would be easier when
restricted to sc-graphs, due to the rich understanding of the adjacency of their vertices.
However in [26], Colbourn and Colbourn prove that I for sc-graphs is also poly-
nomially equivalent to I for graphs. So both the R and I
for sc-graphs are GI-complete. Apart from the sc-graph perspective, these problems are a
window to the famous P v/s NP problem, due to the following theorem by Farrugia [7, p.
99].

Theorem 2.1. P = NP iff R or I for sc-graphs is NP-complete.

2.1 New Complexity Results for sc-graphs

Now we shall prove NP-hardness of MC (hence MI) and C for sc-
graphs. We first prove that these problems are NP-hard on Gsc, the class of sc-graphs
Gsc = P4 − construction of any graph G. Using this we prove the following theorem.
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Theorem 2.2. MC is NP-hard for sc-graphs.

In order to prove Theorem 2.2 we need the following lemma.

Lemma 2.3. MC is NP-hard for Gsc.

Proof. Clearly ω(Gsc) = max{α(G)+ω(G), 2α(G)}. If we consider G to be ∆-free, excluding
a few finite graphs (with ω(G) = α(G) = 2), ω(G) < α(G) and hence ω(Gsc) = 2α(G).
MI for ∆-free graphs is known to be NP-hard [27]. Hence MC is NP-hard for
Gsc.

Proof. (of Theorem 2.2) By restriction, Lemma 2.3 proves the theorem.

Since clique number and independence number of sc-graphs are the same, we have the
following theorem.

Theorem 2.4. MI is NP-hard for sc-graphs.

The following theorem addresses the complexity of finding chromatic number of a sc-
graph.

Theorem 2.5. C is NP-hard for sc-graphs.

Proof. Clearly χ(Gsc) = max{χ(G)+χ(G), 2χ(G)}. We consider G to be a planar graph with
order greater than 25. Using the Nordhus-Gaddum relation χ(G) + χ(G) ≥ 2

√
n and the

five color theorem for planar graphs, we have χ(G) < χ(G), hence χ(Gsc) = 2χ(G). Since
C for co-planar graphs is NP-hard [28] (Clique cover is NP-complete for planar
graphs), so is C for G (since we exclude a finite list of graphs). So C is
NP-hard for Gsc. Hence by restriction, C is NP-hard for sc-graphs.

Remark 2.6. As a result of the strong perfect graph theorem [29], we have the following
characterization of perfect sc-graphs. A sc-graph is perfect if it has no induced odd cycles of
length greater that equal to 5.

Although C for sc-graph is NP-complete, the following theorem states that
k-C is in P.

Theorem 2.7. k-C is in P for sc-graphs.

Proof. Due to the Nordhus-Gaddum relation, for a sc-graph G, we have the following
bounds:

√
n ≤ χ(G) ≤ (n+ 1)/2. This implies that there are only finite number of sc-graphs

that are r-partite (also see Faruggia [7, p. 33]). As a result the number of sc-graphs with
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chromatic number r is also finite (sc-graphs of order less than r2). This means for k ≤ r,
we have a finite list of sc-graphs, whose individual chromatic numbers can be found out in
polynomial time. Hence k-C is in P for sc-graphs.

Remark 2.8. It is interesting to note that for a given k and a sc-graph G we can answer,
in polynomial time, whether χ(G) ≤ k or not, however finding that χ(G) = k turns out to be
NP-hard.

In particular we have the following corollary.

Corollary 2.9. 3-C is in P for sc-graphs.

We present similar results for clique number and independence number of sc-graphs.

Theorem 2.10. C is in P for sc-graphs.

Proof. Since ω(G) ≤ χ(G), we have for a sc-graph ω(G) ≤ (n + 1)/2. For a sc-graph of
order n the clique number ω(G) ≥ p, where p is maximal such that R(p, p) ≤ n. We
know the existence of such a p (since R(p, p) ≤

(2p−2
p−1

)
[12]), for every n. So we have

p ≤ ω(G) ≤ (n + 1)/2. So there are finite number of sc-graph that have clique number r.
Hence for k ≤ r, there is a finite list of sc-graphs, whose individual clique numbers can be
found out in polynomial time. Hence C is in P for sc-graphs.

Since clique problem and independent set problem is same for sc-graphs, we have the
following theorem.

Theorem 2.11. IS is in P for sc-graphs.

2.2 Other Problems

2.2.1 χ(G) −ω(G) is arbitrarily large for regular sc-graphs

We are interested in lexicographic products because of the following lemma.

Lemma 2.12. The lexicographic product of two sc-graphs is a sc-graph.

Proof. Let Gsc and Hsc be two sc-graphs with vertex set {ui} and {vi}, and with c.p.
σg and σh respectively. We prove that the c.p. of the lexicographic product Gsc ◦ Hsc,
σgh(ui, vj) = (σg(ui), σh(vj)). First we show that if edge (ui1, vj1)(ui2, vj2) ∈ E(Gsc ◦Hsc) then
(σg(ui1), σh(vj1))(σg(ui2), σh(vj2)) /∈ E(Gsc ◦Hsc). If (ui1, vj1)(ui2, vj2) ∈ E(Gsc ◦ Hsc) then ei-
ther ui1 = ui2 and vj1vj2 ∈ E(H), or ui1ui2 ∈ E(G). This implies either σg(ui1) = σg(ui2)
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and σh(vj1)σh(vj2) /∈ E(H), or σg(ui1)σg(ui2) /∈ E(G) (because σg and σh are c.p.s). So
(σg(ui1), σh(vj1))(σg(ui2), σh(vj2)) /∈ E(Gsc ◦Hsc). Similarly we see that if (ui1, vj1)(ui2, vj2) /∈
E(Gsc ◦ Hsc) then we have the following: (σg(ui1), σh(vj1))(σg(ui2), σh(vj2)) ∈ E(Gsc ◦Hsc).
Hence Gsc ◦Hsc is a sc-graph.

In particular we have the following corollary.

Corollary 2.13. If Gsc is a sc-graph, so is Gsc ◦Gsc.

Now we look into the clique number and chromatic number of lexicographic products.
It is well known that ω(G ◦H) = ω(G).ω(H). We have a theorem due to Geller and Stahl
[30] on the chromatic number of lexicographic products, which states that if χ(H) = n, then
χ(G ◦H) = χ(G ◦ Kn). Using this we prove the next theorem by an explicit construction.

Theorem 2.14. The difference between chromatic number and clique number of a regular
sc-graph can be arbitrarily large.

Proof. We look into chromatic number of P ◦ P where P is a pentagon. Let the topmost
vertex of the pentagon be labelled 1 and increase the labels in a clockwise manner. For
P2 = P ◦ P we number vertices of topmost pentagon as (11, ..., 15) and so on till (51, ..., 55).
We continue this labelling to higher powers of P . For Pn let P1 represent the topmost Pn−1

and increase in a clockwise manner till P5. It is easy to check that Pn is a regular sc-graph.

Consider P2, P1 to P5 are pentagons with chromatic number χ(P) = 3. For PiPi+1 we
need 6 colors. Hence we give a proper coloring to P1 with colors (1, 2, 3) and P2 with colors
(4, 5, 6). We can give colors (7, 8, 9) to P5 and P3, and (4, 5, 6) to P4. But this would not be
optimal. For an optimal coloring we give colors (4, 7, 8) to P5, and for P3 and P4 we have
colors (1, 2, 3, 5, 6, 7, 8). However if attempt to use 7 colors and use (4, 5, 7) for P5 wo would
have (1, 2, 3, 6, 7) for P3 and P4 and hence a proper coloring would not be possible.

Similarly for Pn, P1 to P5 are Pn−1s with chromatic number χ(Pn−1). For PiPi+1 we need
2χ(Pn−1) colors. Hence we give a proper coloring to P1 with colors (1, 2, 3) and P2 with colors
(4, 5, 6). For an optimal coloring we give dχ(Pn−1)/2e new colors to P5 and for the rest of
P5 use the colors of P2, we will have χ(Pn−1)+2dχ(Pn−1)/2e = 2χ(Pn−1)+1 colors for P3 and
P4. So χn = 2χ(Pn−1) + dχ(Pn−1)/2e = d5χ(Pn−1)/2e. If we had used dχ(Pn−1)/2e − 1 new
colors in P5 we will be left with χ(Pn−1)+ 2dχ(Pn−1)/2e− 2 = 2χ(Pn−1)− 1 colors for P3 and
P4, which is not possible. So we cannot get a proper coloring on 2χ(Pn−1) + dχ(Pn−1)/2e− 1
colors. Hence χ(Pn) = d5χ(Pn−1)/2e.

We know that ω(P) = 2 and ω(Pn) = 2ω(Pn−1) = 2n. Clearly χ(P) > ω(P), and with
χ(Pn) = d5χ(Pn−1)/2e and ω(Pn) = 2ω(Pn−1), we conclude that ω(Pn) − χ(Pn) → ∞ as
n → ∞. So the difference between χ(G) and ω(G) of regular sc-graphs can be arbitrarily
large.
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2.2.2 Domination Number

Now we look into another important graph parameter: the domination number of sc-graphs.
We begin with the following lemma (for proof see [7, p. 4]) and the corresponding corollary.

Lemma 2.15. For a sc-graph Gsc, diam(Gsc) = 3 iff it has a dominating edge.

This naturally leads to the following corollary.

Corollary 2.16. sc-graphs with diameter 3 have domination number 2.

So we need to look into sc-graphs with diameter 2 i.e. self centered sc-graphs. Using the
examples of the self centered sc-graphs constructed by the traditional methods, we mostly
find that two vertices are enough to dominate such sc-graphs. This is probably due to
the abundance of connections from these vertices. Because every vertex in such sc-graphs
have eccentricity 2, these examples suggest we can cover such sc-graphs just by two stars.
However we also found sc-graphs with domination number 3, for example γ(Pn) for n ≥ 2.
The following lemma illustrates a class of sc-graphs which can have large domination
numbers.

Lemma 2.17. Paley graphs can have arbitrarily large domination numbers.

Proof. As shown by Lee [31], the domination number of Paley graph G of order n satisfies
(1/2− ε) logn ≤ γ(G) ≤ logn+ 1. So domination number of Paley graphs can be arbitrarily
large.

So we have the following corollary summarizing results on domination numbers of sc-
graphs.

Corollary 2.18. Domination number of regular sc-graphs can be arbitrarily large.

2.2.3 χ(G) − γ(G) & ω(G) − γ(G) is arbitrarily large for regular sc-graphs

The maximum independent set is a dominating set, so γ(G) ≤ α(G). Hence in case of
sc-graphs we have γ(G) ≤ ω(G) ≤ χ(G). Therefore we look into the differences χ(G)−γ(G)
& ω(G) − γ(G). Due to Broere, Doman and Ridley [32], it is known that the chromatic
number and clique numer of Paley graphs with order p, an even power of a prime, are both
√
p, whereas due to Lee [31] we have the upperbound of the domination number of Paley

graphs with order p is logp + 1. Since Paley graphs are regular sc-graphs, we conclude
χ(G) − γ(G) and ω(G) − γ(G) can also be arbitrarily large for regular sc-graphs.
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3 Further Results on sc-graphs

In this section, we prove the Hadwiger Conjecture for sc-graphs. A theorem without proof
was mentioned by Rao [10, Thm. 4.1] (also see [7, p. 38]) and a formal proof was given by
Girse and Gillman [33]. We present a simple constructive proof.

Theorem 3.1. For a sc-graph of order n

χ(G) ≤
⌊
n+ 1
2

⌋
≤ η(G).

In particular, the Hadwiger conjecture is true for sc-graphs.

Proof. Without loss of generality, we assume that in each cycle of the c.p. (v1, v2, ..., v4r) of
sc-graph G, v2i−1v2i ∈ E(G), where i ≤ 2r is a non-negative integer. And let v0 be the fixed
point of any sc-graph of odd order. We consider both the cases where order of the sc-graph
is 4k or 4k+ 1.

If order of the sc-graph is 4k, from the Nordhus-Gaddum relation we have χ(G) ≤
(4k + 1)/2, i.e. χ(G) ≤ 2k. Assuming the edges v2i−1v2i to be the subgraphs, there are 2k
subgraphs in total. It is easy to see that between any two edges v2i−1v2i and v2j−1v2j, either
of v2i−1v2j−1 or v2iv2j ∈ E(G). Hence Hadwiger number η(G) ≥ 2k.

If order of the sc-graph is 4k + 1, from the Nordhus-Gaddum relation we have χ(G) ≤
(4k + 1 + 1)/2, i.e. χ(G) ≤ 2k + 1. Assuming the edges v2i−1v2i and vertex v0 to be the
subgraphs, there are 2k+ 1 subgraphs in total. It is easy to see that between any two edges
v2i−1v2i and v2j−1v2j, either of v2iv2j or v2i−1v2j−1 ∈ E(G) Also between v0 and v2i−1v2i, either
v0v2i−1 or v0v2i ∈ E(G). Hence Hadwiger number η(G) ≥ 2k+ 1. So the Hadwiger conjecture
is true for sc-graphs.

In the following lemma, we prove that the lower bound of the Hadwiger number η(G)
is attained by regular sc-graphs.

Lemma 3.2. Hadwiger number of regular sc-graphs of order n is b(n+ 1)/2c.

Proof. It is evident that regular sc-graphs have odd order, say 4k+ 1, making the degree of
each vertex 2k. Using Theorem 3.1 we have η(G) ≥ 2k + 1. So in any η(G) partition of the
vertex set V(G), there is a set Vi which is singleton; say Vi = {v0}. Since degree of v0 is 2k
and it is joined to all sets in the partition, we have η(G) ≤ 2k+ 1 (v0 and its 2k neighbours).
Hence η(G) = 2k+ 1 = b(n+ 1)/2c.

Remark 3.3. Using results on chromatic number, clique number and domination number of a
class of Paley graphs given in Subsections 2.2.2 & 2.2.3, and observing that Paley graphs are
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regular sc-graphs, we conclude that the differences η(G)−χ(G), η(G)−ω(G) and η(G)−γ(G)
can be arbitrarily large for regular sc-graphs.

We further observe that this value is attained by a few other classes of sc-graphs, with
subgraphs as mentioned in the proof of Theorem 3.1. We shall now prove that chordal
sc-graphs also have this Hadwiger number.

Lemma 3.4. Hadwiger number of chordal sc-graphs of order n is b(n+ 1)/2c.

Proof. Stiebitz [34] proved that for a chordal graph, we have η(G) = ω(G). Further ap-
plying Theorem 3.1, we conclude that Hadwiger number of chordal sc-graphs of order n is
b(n+ 1)/2c.

Due to Kostochka [35], we have the following Nordhaus–Gaddum type result on Had-
wiger numbers of graphs

η(G) + η(G) ≤
⌊
6n
5

⌋
.

Hence for a sc-graph η(G) ≤ 1
2

⌊6n
5

⌋
.

Below we give a construction, inspired by one given in [34], to produce sc-graphs with
Hadwiger numbers varying from b(n+ 1)/2c to b6n/5c /2.

Construction: Let X1, X2, X3, X4 and X5 be disjoint sets of vertices satisfying | Xi |= q,
for i = 2 to 5, and | X1 |= r, for integers q, r > 0 and r ≡ 0, 1 (mod 4). Let X1 induce a
sc-graph of order r, X3 and X4 induce complete graphs, and X2 and X5 induce empty graphs.
Join Xi to Xi+1, for i = 1 to 4, and X5 to X1 by all possible edges. The resulting graph G on
4q+ r vertices is a sc-graph. It also can be easily checked that its Hadwiger number

η(G) =


2q+ r r ≤ q
3q r > q, η(G[X1]) ≤ q
2q+ η(G[X1]) r > q, η(G[X1]) > q.

So for given order n ≡ 0, 1 (mod 4), we can construct sc-graphs whose Hadwiger
numbers attain the bounds. Whether all intermediate values are attained is a problem for
future research.

Remark 3.5. We can easily construct a sc-graph with given Hadwiger number η(G). If η(G)
is even, then we construct a regular sc-graph of order 2η(G) + 1. If η(G) is odd, then we do
the above construction with q = η(G) and r = 1, resulting in a sc-graph of order 4η(G) + 1.
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4 Results on sc-digraphs

The sc-digraphs are one of the lesser studied parts of the theory of sc-graphs. Here we
disprove the following conjecture made by the first author in [10] (see also [7, p. 58]).

Conjecture 4.1. Every strongly connected sc-digraph has a Hamiltonian dipath.

Proof. We disprove Conjecture 4.1 by constructing an infinite set of counterexamples. Con-
struct a graph G such that its vertex set V(G) is partitioned into A1, A2, A3 and A4, such
that |A1| = |A2| = n and |A3| = |A4| = m. Furthermore G[A1 ∪ A3] is a complete symmetric
digraph where as G[A2∪A4] is an empty graph on n+m nodes. We also have the following
additional edges Ai—Ai+1 under addition modulo 4, where G—H means every vertex in H is
adjacent to every vertex of G. It is easy to see that G is a strongly connected sc-digraph.
Let m > 2n and n ≥ 2. Assume that there is a Hamiltonian dipath in G. For every vertex
u ∈ A4, the next vertex on P will be in A1, unless u is the last vertex of P. Since m > 2n,
this is not possible. So G has no Hamiltonian dipath. By taking various values of n ≥ 2
we can construct an infinite class of counter-examples.

Remark 4.2. It is easy to note that the vertex connectivity of G constructed in the above proof
is n. Hence large vertex connectivity does not in general imply the existence of Hamiltonian
dipath in a sc-digraph.

5 Open Problems and Conclusion

Below we list some of the open problems encountered in this paper.

1. Characterise sc-digraphs with Hamiltonian dipaths.

2. Characterise sc-digraphs with Hamiltonian dicycles.

3. Characterise sc-digraphs with directed 1-factor.

4. Determine complexity of D for sc-graphs.

5. Determine the possible Hadwiger numbers of sc-graphs of order n.

Please note that the problems 1 to 3 are settled for sc-graphs. It is evident from the above
list that, although a lot of work has been done in sc-graphs, many of the corresponding
problems are not yet analysed for sc-digraphs.

From our results, we can design polynomially bounded algorithms for solving some of the
well known decision problems on graph parameters, yet these algorithms are not practical.
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On the NP-hardness of finding the chromatic number, clique number and independence
number, it is interesting to note that finding these important graph parameters is difficult
even for sc-graphs, which is a very small fraction of graphs and for which we know the
adjacency of its vertices very well.
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